Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import time | |
| import random | |
| # Load tiny model | |
| tokenizer = AutoTokenizer.from_pretrained("nilq/mistral-1L-tiny") | |
| model = AutoModelForCausalLM.from_pretrained("nilq/mistral-1L-tiny") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| chat_history = [] | |
| def chaotic_ai(user_input): | |
| global chat_history | |
| # Keep last 5 messages only | |
| chat_history = chat_history[-5:] | |
| chat_history.append({"role": "user", "content": user_input}) | |
| try: | |
| inputs = tokenizer.apply_chat_template( | |
| chat_history, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device) | |
| except Exception as e: | |
| yield f"[!] Tokenizer crashed: {str(e)}\n" | |
| return | |
| output_ids = inputs["input_ids"].clone() | |
| generated_text = "" | |
| for _ in range(20): # low max_new_tokens | |
| try: | |
| # 10% chance skip token | |
| if random.random() < 0.1: | |
| continue | |
| # 5% chance repeat last token | |
| if random.random() < 0.05 and len(output_ids) > 0: | |
| next_token_id = output_ids[0, -1].unsqueeze(0) | |
| else: | |
| new_tokens = model.generate( | |
| **{"input_ids": output_ids}, | |
| max_new_tokens=1, | |
| do_sample=True, | |
| temperature=1.5, | |
| top_k=50, | |
| top_p=0.95 | |
| ) | |
| next_token_id = new_tokens[0, -1].unsqueeze(0) | |
| # Randomly raise error 5% of time | |
| if random.random() < 0.05: | |
| raise RuntimeError("Random token generation failure!") | |
| output_ids = torch.cat([output_ids, next_token_id.unsqueeze(0)], dim=1) | |
| # Decode latest token | |
| token_str = tokenizer.decode(next_token_id) | |
| # Glitch characters 15% | |
| token_glitch = "".join(c if random.random() > 0.15 else random.choice("@#$%&?") for c in token_str) | |
| # Randomly truncate mid-token 5% | |
| if random.random() < 0.05: | |
| token_glitch = token_glitch[:max(1, len(token_glitch)//2)] | |
| # Randomly erase previous characters 5% | |
| if random.random() < 0.05 and len(generated_text) > 0: | |
| erase_len = random.randint(1, min(3, len(generated_text))) | |
| generated_text = generated_text[:-erase_len] | |
| generated_text += token_glitch | |
| # Random slow down | |
| time.sleep(0.4 + random.random()*0.6) | |
| # Yield live update | |
| yield generated_text | |
| except Exception as e: | |
| yield f"[!] Crash: {str(e)}\n" | |
| # Occasionally duplicate response in history | |
| if random.random() < 0.1: | |
| chat_history.append({"role": "assistant", "content": generated_text*2}) | |
| else: | |
| chat_history.append({"role": "assistant", "content": generated_text}) | |
| iface = gr.Interface( | |
| fn=chaotic_ai, | |
| inputs=gr.Textbox(label="You"), | |
| outputs=gr.Textbox(label="AI"), | |
| title="π Insane Chaotic Tiny AI", | |
| description="Slow, glitchy, buggy, erasing, repeating, chaotic AI. Every terrible behavior is real.", | |
| live=True | |
| ) | |
| iface.launch() | |