File size: 8,236 Bytes
6a3bd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

import torch
import open_clip
from PIL import Image
from typing import List, Dict
import numpy as np

class OpenCLIPSemanticManager:
    """Zero-shot classification and visual feature extraction with enhanced scene understanding"""

    def __init__(self):
        print("Loading OpenCLIP ViT-H/14 model...")
        self.model, _, self.preprocess = open_clip.create_model_and_transforms(
            'ViT-H-14',
            pretrained='laion2b_s32b_b79k'
        )
        self.tokenizer = open_clip.get_tokenizer('ViT-H-14')

        if torch.cuda.is_available():
            self.model = self.model.cuda()
        self.model.eval()

        # Enhanced scene vocabularies
        self.scene_vocabularies = {
            'urban': [
                'city canyon with tall buildings',
                'downtown street with skyscrapers',
                'urban corridor between buildings',
                'busy city intersection',
                'metropolitan avenue'
            ],
            'lighting': [
                'overcast cloudy day',
                'bright sunny day',
                'golden hour warm glow',
                'blue hour twilight',
                'harsh midday sun',
                'soft diffused light',
                'dramatic evening light',
                'moody overcast atmosphere'
            ],
            'mood': [
                'bustling and energetic',
                'calm and contemplative',
                'dramatic and imposing',
                'intimate and cozy',
                'vibrant and lively'
            ]
        }

        # Hierarchical vocabularies
        self.coarse_labels = [
            'furniture', 'musical instrument', 'artwork',
            'appliance', 'decoration', 'tool', 'electronic device',
            'clothing', 'accessory', 'food', 'plant'
        ]

        self.domain_vocabularies = {
            'musical instrument': [
                'acoustic guitar', 'electric guitar', 'bass guitar',
                'classical guitar', 'ukulele', 'violin', 'cello',
                'piano', 'keyboard', 'drums', 'saxophone', 'trumpet'
            ],
            'furniture': [
                'chair', 'sofa', 'table', 'desk', 'shelf',
                'cabinet', 'bed', 'stool', 'bench', 'wardrobe'
            ],
            'electronic device': [
                'smartphone', 'laptop', 'tablet', 'camera',
                'headphones', 'speaker', 'monitor', 'keyboard', 'mouse'
            ],
            'clothing': [
                'shirt', 'pants', 'dress', 'jacket', 'coat',
                'sweater', 'skirt', 'jeans', 'hoodie'
            ],
            'accessory': [
                'watch', 'sunglasses', 'hat', 'scarf', 'belt',
                'bag', 'wallet', 'jewelry', 'tie'
            ]
        }

        self.text_features_cache = {}
        self._cache_text_features()

        print("✓ OpenCLIP loaded with enhanced scene understanding")

    def _cache_text_features(self):
        """Pre-compute and cache text features"""
        with torch.no_grad():
            # Cache coarse labels
            prompts = [f"a photo of {label}" for label in self.coarse_labels]
            text = self.tokenizer(prompts)
            if torch.cuda.is_available():
                text = text.cuda()
            self.text_features_cache['coarse'] = self.model.encode_text(text)
            self.text_features_cache['coarse'] /= self.text_features_cache['coarse'].norm(dim=-1, keepdim=True)

            # Cache domain vocabularies
            for domain, labels in self.domain_vocabularies.items():
                prompts = [f"a photo of {label}" for label in labels]
                text = self.tokenizer(prompts)
                if torch.cuda.is_available():
                    text = text.cuda()
                features = self.model.encode_text(text)
                features /= features.norm(dim=-1, keepdim=True)
                self.text_features_cache[domain] = features

            # Cache scene vocabularies
            for scene_type, labels in self.scene_vocabularies.items():
                text = self.tokenizer(labels)
                if torch.cuda.is_available():
                    text = text.cuda()
                features = self.model.encode_text(text)
                features /= features.norm(dim=-1, keepdim=True)
                self.text_features_cache[f'scene_{scene_type}'] = features

    def analyze_scene(self, image: Image.Image) -> Dict:
        """Comprehensive scene analysis"""
        image_features = self.encode_image(image)

        scene_analysis = {}

        # Analyze each scene aspect
        for scene_type in ['urban', 'lighting', 'mood']:
            cache_key = f'scene_{scene_type}'
            similarity = (image_features @ self.text_features_cache[cache_key].T) / 0.01
            probs = similarity.softmax(dim=-1)

            results = {}
            for i, label in enumerate(self.scene_vocabularies[scene_type]):
                results[label] = float(probs[0, i].cpu())

            top_result = max(results.items(), key=lambda x: x[1])
            scene_analysis[scene_type] = {
                'top': top_result[0],
                'confidence': top_result[1],
                'all_scores': results
            }

        return scene_analysis

    def encode_image(self, image: Image.Image) -> torch.Tensor:
        """Encode image to feature vector"""
        with torch.no_grad():
            image_tensor = self.preprocess(image).unsqueeze(0)
            if torch.cuda.is_available():
                image_tensor = image_tensor.cuda()

            image_features = self.model.encode_image(image_tensor)
            image_features /= image_features.norm(dim=-1, keepdim=True)
            return image_features

    def encode_text(self, text_list: List[str]) -> torch.Tensor:
        """Encode text list to feature vectors"""
        with torch.no_grad():
            prompts = [f"a photo of {text}" for text in text_list]
            text = self.tokenizer(prompts)
            if torch.cuda.is_available():
                text = text.cuda()

            text_features = self.model.encode_text(text)
            text_features /= text_features.norm(dim=-1, keepdim=True)
            return text_features

    def classify_zero_shot(self, image: Image.Image, candidate_labels: List[str]) -> Dict[str, float]:
        """Zero-shot classification"""
        image_features = self.encode_image(image)
        text_features = self.encode_text(candidate_labels)

        similarity = (image_features @ text_features.T) / 0.01
        probs = similarity.softmax(dim=-1)

        results = {}
        for i, label in enumerate(candidate_labels):
            results[label] = float(probs[0, i].cpu())

        return results

    def classify_hierarchical(self, image: Image.Image) -> Dict:
        """Hierarchical classification"""
        image_features = self.encode_image(image)

        coarse_similarity = (image_features @ self.text_features_cache['coarse'].T) / 0.01
        coarse_probs = coarse_similarity.softmax(dim=-1)

        coarse_results = {}
        for i, label in enumerate(self.coarse_labels):
            coarse_results[label] = float(coarse_probs[0, i].cpu())

        top_category = max(coarse_results, key=coarse_results.get)

        if top_category in self.domain_vocabularies:
            fine_labels = self.domain_vocabularies[top_category]
            fine_similarity = (image_features @ self.text_features_cache[top_category].T) / 0.01
            fine_probs = fine_similarity.softmax(dim=-1)

            fine_results = {}
            for i, label in enumerate(fine_labels):
                fine_results[label] = float(fine_probs[0, i].cpu())

            top_prediction = max(fine_results, key=fine_results.get)

            return {
                'coarse': top_category,
                'fine': fine_results,
                'top_prediction': top_prediction,
                'confidence': fine_results[top_prediction]
            }

        return {
            'coarse': top_category,
            'top_prediction': top_category,
            'confidence': coarse_results[top_category]
        }

print("✓ OpenCLIPSemanticManager defined")