Spaces:
Build error
Build error
| #Importing the libraries | |
| import gradio as gr | |
| import pickle | |
| import pandas as pd | |
| import numpy as np | |
| import joblib | |
| from PIL import Image | |
| #using joblib to load the model: | |
| encoder = joblib.load('encoder.joblib') # loading the encoder | |
| scaler = joblib.load('scaler.joblib') # loading the scaler | |
| model = joblib.load('model.joblib') # loading the model | |
| # Create a function that applies the ML pipeline and makes predictions | |
| def predict(age,gender,education,marital_status,race,employment_stat,wage_per_hour,working_week_per_year,industry_code,occupation_code, | |
| total_employed,vet_benefit,tax_status,gains,losses,stocks_status,citizenship,mig_year,importance_of_record): | |
| # Create a dataframe with the input data | |
| input_df = pd.DataFrame({ | |
| 'age': [age], | |
| 'gender': [gender], | |
| 'education': [education], | |
| 'marital_status': [marital_status], | |
| 'race': [race], | |
| 'employment_stat': [employment_stat], | |
| 'wage_per_hour': [wage_per_hour], | |
| 'working_week_per_year': [working_week_per_year], | |
| 'industry_code': [industry_code], | |
| 'occupation_code': [occupation_code], | |
| 'total_employed': [total_employed], | |
| 'vet_benefit': [vet_benefit], | |
| 'tax_status': [tax_status], | |
| 'gains': [gains], | |
| 'losses': [losses], | |
| 'stocks_status': [stocks_status], | |
| 'citizenship': [citizenship], | |
| 'mig_year': [mig_year], | |
| 'importance_of_record': [importance_of_record] | |
| }) # type: ignore | |
| # Create a list with the categorical and numerical columns | |
| cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object'] | |
| num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object'] | |
| # # Impute the missing values | |
| # input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns]) | |
| # input_df_imputed_num = num_imputer.transform(input_df[num_columns]) | |
| # Encode the categorical columns | |
| input_encoded_df = pd.DataFrame(encoder.transform(input_df[cat_columns]).toarray(), | |
| columns=encoder.get_feature_names_out(cat_columns)) | |
| # Scale the numerical columns | |
| input_df_scaled = scaler.transform(input_encoded_df) | |
| input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns) | |
| #joining the cat encoded and num scaled | |
| final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1) | |
| # Make predictions using the model | |
| predict = model.predict(final_df) | |
| prediction_label = "INCOME ABOVE LIMIT" if predict.item() == '1' else "INCOME BELOW LIMIT" | |
| return prediction_label | |
| #return predictions | |
| #define the input interface | |
| input_interface = [] | |
| with gr.Blocks(css=".gradio-container {background-color:silver}") as app: | |
| title = gr.Label('INCOME PREDICTION APP.') | |
| img = gr.Image("income_image.png").style(height= 210 , width= 1250) | |
| with gr.Row(): | |
| gr.Markdown("This application provides predictions on whether a person earns above or below the income level. Please enter the person's information below and click PREDICT to view the prediction outcome.") | |
| with gr.Row(): | |
| with gr.Column(scale=4, min_width=500): | |
| input_interface = [ | |
| gr.components.Number(label="How Old are you?"), | |
| gr.components.Radio(['male', 'female'], label='What is your Gender?'), | |
| gr.components.Dropdown(['High School', 'left', 'Undergrad', 'Grad', 'Associate Degree', | |
| 'Doctorate'], label='What is your level of education?'), | |
| gr.components.Dropdown(['Widowed', 'Single', 'Married', 'Divorced', 'Separated'], label='Marital Status?'), | |
| gr.components.Dropdown([' White', ' Black', ' Asian or Pacific Islander', | |
| ' Amer Indian Aleut or Eskimo', ' Other'], label='Whats your race?'), | |
| gr.components.Dropdown([0, 2, 1], label='Whats your emploment status? (0 = Unemployed, 1 = Self-Employed, 2 = Employed)'), | |
| gr.components.Number(label='How much is your Wage per Hour? (0 - 10000)'), | |
| gr.components.Number(label='How many weeks have you worked in a year? (1 - 52)'), | |
| gr.components.Number(label='How many working weeks per year do you work?'), | |
| gr.components.Number(label='What is your Industry Code? (1 - 51)'), | |
| gr.components.Number(label='What is your occupation Code? (1 - 46)'), | |
| gr.components.Number(label='Number of persons working for employer? (1 - 7)'), | |
| gr.components.Number(label='Benefit? (1 - 3)'), | |
| gr.components.Dropdown([' Head of household', ' Single', ' Nonfiler', ' Joint both 65+', | |
| ' Joint one 65+ & one under 65', ' Joint one under 65 & one 65+'],label='Whats your tax status?'), | |
| gr.components.Number(label='What is your Gain'), | |
| gr.components.Number(label='What is your Loss'), | |
| gr.components.Number(label='What is your Stock Status'), | |
| gr.components.Dropdown(['Native', ' Foreign born- Not a citizen of U S ', | |
| ' Foreign born- U S citizen by naturalization', | |
| ' Native- Born abroad of American Parent(s)', | |
| ' Native- Born in U S',' Native- Born in Puerto Rico or U S Outlying'], label='Whats is your Citizenshiip?'), | |
| gr.components.Radio([94,95], label='Whats your year of migration?'), | |
| gr.components.Number(label='Whats your Weight Of Instance?') | |
| ] | |
| with gr.Row(): | |
| predict_btn = gr.Button('Predict') | |
| # Define the output interfaces | |
| output_interface = gr.Label(label="INCOME ABOVE LIMIT") | |
| predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface) | |
| app.launch(share=False) |