DeeeTeeee01's picture
Upload app.py
3f9a7ec
#Importing the libraries
import gradio as gr
import pickle
import pandas as pd
import numpy as np
import joblib
from PIL import Image
#using joblib to load the model:
encoder = joblib.load('encoder.joblib') # loading the encoder
scaler = joblib.load('scaler.joblib') # loading the scaler
model = joblib.load('model.joblib') # loading the model
# Create a function that applies the ML pipeline and makes predictions
def predict(age,gender,education,marital_status,race,employment_stat,wage_per_hour,working_week_per_year,industry_code,occupation_code,
total_employed,vet_benefit,tax_status,gains,losses,stocks_status,citizenship,mig_year,importance_of_record):
# Create a dataframe with the input data
input_df = pd.DataFrame({
'age': [age],
'gender': [gender],
'education': [education],
'marital_status': [marital_status],
'race': [race],
'employment_stat': [employment_stat],
'wage_per_hour': [wage_per_hour],
'working_week_per_year': [working_week_per_year],
'industry_code': [industry_code],
'occupation_code': [occupation_code],
'total_employed': [total_employed],
'vet_benefit': [vet_benefit],
'tax_status': [tax_status],
'gains': [gains],
'losses': [losses],
'stocks_status': [stocks_status],
'citizenship': [citizenship],
'mig_year': [mig_year],
'importance_of_record': [importance_of_record]
}) # type: ignore
# Create a list with the categorical and numerical columns
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
# # Impute the missing values
# input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
# input_df_imputed_num = num_imputer.transform(input_df[num_columns])
# Encode the categorical columns
input_encoded_df = pd.DataFrame(encoder.transform(input_df[cat_columns]).toarray(),
columns=encoder.get_feature_names_out(cat_columns))
# Scale the numerical columns
input_df_scaled = scaler.transform(input_encoded_df)
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
#joining the cat encoded and num scaled
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
# Make predictions using the model
predict = model.predict(final_df)
prediction_label = "INCOME ABOVE LIMIT" if predict.item() == '1' else "INCOME BELOW LIMIT"
return prediction_label
#return predictions
#define the input interface
input_interface = []
with gr.Blocks(css=".gradio-container {background-color:silver}") as app:
title = gr.Label('INCOME PREDICTION APP.')
img = gr.Image("income_image.png").style(height= 210 , width= 1250)
with gr.Row():
gr.Markdown("This application provides predictions on whether a person earns above or below the income level. Please enter the person's information below and click PREDICT to view the prediction outcome.")
with gr.Row():
with gr.Column(scale=4, min_width=500):
input_interface = [
gr.components.Number(label="How Old are you?"),
gr.components.Radio(['male', 'female'], label='What is your Gender?'),
gr.components.Dropdown(['High School', 'left', 'Undergrad', 'Grad', 'Associate Degree',
'Doctorate'], label='What is your level of education?'),
gr.components.Dropdown(['Widowed', 'Single', 'Married', 'Divorced', 'Separated'], label='Marital Status?'),
gr.components.Dropdown([' White', ' Black', ' Asian or Pacific Islander',
' Amer Indian Aleut or Eskimo', ' Other'], label='Whats your race?'),
gr.components.Dropdown([0, 2, 1], label='Whats your emploment status? (0 = Unemployed, 1 = Self-Employed, 2 = Employed)'),
gr.components.Number(label='How much is your Wage per Hour? (0 - 10000)'),
gr.components.Number(label='How many weeks have you worked in a year? (1 - 52)'),
gr.components.Number(label='How many working weeks per year do you work?'),
gr.components.Number(label='What is your Industry Code? (1 - 51)'),
gr.components.Number(label='What is your occupation Code? (1 - 46)'),
gr.components.Number(label='Number of persons working for employer? (1 - 7)'),
gr.components.Number(label='Benefit? (1 - 3)'),
gr.components.Dropdown([' Head of household', ' Single', ' Nonfiler', ' Joint both 65+',
' Joint one 65+ & one under 65', ' Joint one under 65 & one 65+'],label='Whats your tax status?'),
gr.components.Number(label='What is your Gain'),
gr.components.Number(label='What is your Loss'),
gr.components.Number(label='What is your Stock Status'),
gr.components.Dropdown(['Native', ' Foreign born- Not a citizen of U S ',
' Foreign born- U S citizen by naturalization',
' Native- Born abroad of American Parent(s)',
' Native- Born in U S',' Native- Born in Puerto Rico or U S Outlying'], label='Whats is your Citizenshiip?'),
gr.components.Radio([94,95], label='Whats your year of migration?'),
gr.components.Number(label='Whats your Weight Of Instance?')
]
with gr.Row():
predict_btn = gr.Button('Predict')
# Define the output interfaces
output_interface = gr.Label(label="INCOME ABOVE LIMIT")
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
app.launch(share=False)