#Importing the libraries import gradio as gr import pickle import pandas as pd import numpy as np import joblib from PIL import Image #using joblib to load the model: encoder = joblib.load('encoder.joblib') # loading the encoder scaler = joblib.load('scaler.joblib') # loading the scaler model = joblib.load('model.joblib') # loading the model # Create a function that applies the ML pipeline and makes predictions def predict(age,gender,education,marital_status,race,employment_stat,wage_per_hour,working_week_per_year,industry_code,occupation_code, total_employed,vet_benefit,tax_status,gains,losses,stocks_status,citizenship,mig_year,importance_of_record): # Create a dataframe with the input data input_df = pd.DataFrame({ 'age': [age], 'gender': [gender], 'education': [education], 'marital_status': [marital_status], 'race': [race], 'employment_stat': [employment_stat], 'wage_per_hour': [wage_per_hour], 'working_week_per_year': [working_week_per_year], 'industry_code': [industry_code], 'occupation_code': [occupation_code], 'total_employed': [total_employed], 'vet_benefit': [vet_benefit], 'tax_status': [tax_status], 'gains': [gains], 'losses': [losses], 'stocks_status': [stocks_status], 'citizenship': [citizenship], 'mig_year': [mig_year], 'importance_of_record': [importance_of_record] }) # type: ignore # Create a list with the categorical and numerical columns cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object'] num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object'] # # Impute the missing values # input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns]) # input_df_imputed_num = num_imputer.transform(input_df[num_columns]) # Encode the categorical columns input_encoded_df = pd.DataFrame(encoder.transform(input_df[cat_columns]).toarray(), columns=encoder.get_feature_names_out(cat_columns)) # Scale the numerical columns input_df_scaled = scaler.transform(input_encoded_df) input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns) #joining the cat encoded and num scaled final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1) # Make predictions using the model predict = model.predict(final_df) prediction_label = "INCOME ABOVE LIMIT" if predict.item() == '1' else "INCOME BELOW LIMIT" return prediction_label #return predictions #define the input interface input_interface = [] with gr.Blocks(css=".gradio-container {background-color:silver}") as app: title = gr.Label('INCOME PREDICTION APP.') img = gr.Image("income_image.png").style(height= 210 , width= 1250) with gr.Row(): gr.Markdown("This application provides predictions on whether a person earns above or below the income level. Please enter the person's information below and click PREDICT to view the prediction outcome.") with gr.Row(): with gr.Column(scale=4, min_width=500): input_interface = [ gr.components.Number(label="How Old are you?"), gr.components.Radio(['male', 'female'], label='What is your Gender?'), gr.components.Dropdown(['High School', 'left', 'Undergrad', 'Grad', 'Associate Degree', 'Doctorate'], label='What is your level of education?'), gr.components.Dropdown(['Widowed', 'Single', 'Married', 'Divorced', 'Separated'], label='Marital Status?'), gr.components.Dropdown([' White', ' Black', ' Asian or Pacific Islander', ' Amer Indian Aleut or Eskimo', ' Other'], label='Whats your race?'), gr.components.Dropdown([0, 2, 1], label='Whats your emploment status? (0 = Unemployed, 1 = Self-Employed, 2 = Employed)'), gr.components.Number(label='How much is your Wage per Hour? (0 - 10000)'), gr.components.Number(label='How many weeks have you worked in a year? (1 - 52)'), gr.components.Number(label='How many working weeks per year do you work?'), gr.components.Number(label='What is your Industry Code? (1 - 51)'), gr.components.Number(label='What is your occupation Code? (1 - 46)'), gr.components.Number(label='Number of persons working for employer? (1 - 7)'), gr.components.Number(label='Benefit? (1 - 3)'), gr.components.Dropdown([' Head of household', ' Single', ' Nonfiler', ' Joint both 65+', ' Joint one 65+ & one under 65', ' Joint one under 65 & one 65+'],label='Whats your tax status?'), gr.components.Number(label='What is your Gain'), gr.components.Number(label='What is your Loss'), gr.components.Number(label='What is your Stock Status'), gr.components.Dropdown(['Native', ' Foreign born- Not a citizen of U S ', ' Foreign born- U S citizen by naturalization', ' Native- Born abroad of American Parent(s)', ' Native- Born in U S',' Native- Born in Puerto Rico or U S Outlying'], label='Whats is your Citizenshiip?'), gr.components.Radio([94,95], label='Whats your year of migration?'), gr.components.Number(label='Whats your Weight Of Instance?') ] with gr.Row(): predict_btn = gr.Button('Predict') # Define the output interfaces output_interface = gr.Label(label="INCOME ABOVE LIMIT") predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface) app.launch(share=False)