Spaces:
Runtime error
Runtime error
Commit
·
86e25d4
1
Parent(s):
6c27f8f
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import numpy as np
|
| 4 |
+
from matplotlib import pyplot as plt
|
| 5 |
+
import pickle
|
| 6 |
+
import sklearn
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Load the saved components
|
| 12 |
+
with open("dt_model.pkl", "rb") as f:
|
| 13 |
+
components = pickle.load(f)
|
| 14 |
+
|
| 15 |
+
# Extract the individual components
|
| 16 |
+
num_imputer = components["num_imputer"]
|
| 17 |
+
cat_imputer = components["cat_imputer"]
|
| 18 |
+
encoder = components["encoder"]
|
| 19 |
+
scaler = components["scaler"]
|
| 20 |
+
dt_model = components["models"]
|
| 21 |
+
|
| 22 |
+
# Create the app
|
| 23 |
+
|
| 24 |
+
st.set_page_config(
|
| 25 |
+
layout="wide"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Add an image or logo to the app
|
| 30 |
+
image = Image.open('copofav.jpg')
|
| 31 |
+
|
| 32 |
+
# Open the image file
|
| 33 |
+
st.image(image)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
#add app title
|
| 37 |
+
st.title("SALES PREDICTION APP")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Add some text
|
| 41 |
+
st.write("Please ENTER the relevant data and CLICK Predict.")
|
| 42 |
+
|
| 43 |
+
# Create the input fields
|
| 44 |
+
input_data = {}
|
| 45 |
+
col1,col2,col3 = st.columns(3)
|
| 46 |
+
with col1:
|
| 47 |
+
input_data['store_nbr'] = st.slider("Store Number",0,54)
|
| 48 |
+
input_data['products'] = st.selectbox("Products Family", ['OTHERS', 'CLEANING', 'FOODS', 'STATIONERY', 'GROCERY', 'HARDWARE',
|
| 49 |
+
'HOME', 'CLOTHING'])
|
| 50 |
+
input_data['onpromotion'] =st.number_input("Discount Amt On Promotion",step=1)
|
| 51 |
+
input_data['state'] = st.selectbox("State", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura',
|
| 52 |
+
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza',
|
| 53 |
+
'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja',
|
| 54 |
+
'El Oro', 'Esmeraldas', 'Manabi'])
|
| 55 |
+
with col2:
|
| 56 |
+
input_data['store_type'] = st.selectbox("Store Type",['D', 'C', 'B', 'E', 'A'])
|
| 57 |
+
input_data['cluster'] = st.number_input("Cluster",step=1)
|
| 58 |
+
input_data['dcoilwtico'] = st.number_input("DCOILWTICO",step=1)
|
| 59 |
+
input_data['year'] = st.number_input("Year to Predict",step=1)
|
| 60 |
+
with col3:
|
| 61 |
+
input_data['month'] = st.slider("Month",1,12)
|
| 62 |
+
input_data['day'] = st.slider("Day",1,31)
|
| 63 |
+
input_data['dayofweek'] = st.number_input("Day of Week,0=Sunday and 6=Satruday",step=1)
|
| 64 |
+
input_data['end_month'] = st.selectbox("Is it End of the Month?",['True','False'])
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Create a button to make a prediction
|
| 68 |
+
if st.button("Predict"):
|
| 69 |
+
# Convert the input data to a pandas DataFrame
|
| 70 |
+
input_df = pd.DataFrame([input_data])
|
| 71 |
+
|
| 72 |
+
# categorizing the products
|
| 73 |
+
food_families = ['BEVERAGES', 'BREAD/BAKERY', 'FROZEN FOODS', 'MEATS', 'PREPARED FOODS', 'DELI','PRODUCE', 'DAIRY','POULTRY','EGGS','SEAFOOD']
|
| 74 |
+
home_families = ['HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES']
|
| 75 |
+
clothing_families = ['LINGERIE', 'LADYSWARE']
|
| 76 |
+
grocery_families = ['GROCERY I', 'GROCERY II']
|
| 77 |
+
stationery_families = ['BOOKS', 'MAGAZINES','SCHOOL AND OFFICE SUPPLIES']
|
| 78 |
+
cleaning_families = ['HOME CARE', 'BABY CARE','PERSONAL CARE']
|
| 79 |
+
hardware_families = ['PLAYERS AND ELECTRONICS','HARDWARE']
|
| 80 |
+
others_families = ['AUTOMOTIVE', 'BEAUTY','CELEBRATION', 'LADIESWEAR', 'LAWN AND GARDEN', 'LIQUOR,WINE,BEER', 'PET SUPPLIES']
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Apply the same preprocessing steps as done during training
|
| 86 |
+
input_df['products'] = np.where(input_df['products'].isin(food_families), 'FOODS', input_df['products'])
|
| 87 |
+
input_df['products'] = np.where(input_df['products'].isin(home_families), 'HOME', input_df['products'])
|
| 88 |
+
input_df['products'] = np.where(input_df['products'].isin(clothing_families), 'CLOTHING', input_df['products'])
|
| 89 |
+
input_df['products'] = np.where(input_df['products'].isin(grocery_families), 'GROCERY', input_df['products'])
|
| 90 |
+
input_df['products'] = np.where(input_df['products'].isin(stationery_families), 'STATIONERY', input_df['products'])
|
| 91 |
+
input_df['products'] = np.where(input_df['products'].isin(cleaning_families), 'CLEANING', input_df['products'])
|
| 92 |
+
input_df['products'] = np.where(input_df['products'].isin(hardware_families), 'HARDWARE', input_df['products'])
|
| 93 |
+
input_df['products'] = np.where(input_df['products'].isin(others_families), 'OTHERS', input_df['products'])
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
categorical_columns = ['products', 'end_month', 'store_type', 'state']
|
| 97 |
+
numerical_columns =['store_nbr','onpromotion','cluster','dcoilwtico','year','month','day','dayofweek']
|
| 98 |
+
# Impute missing values
|
| 99 |
+
input_df_cat = input_df[categorical_columns].copy()
|
| 100 |
+
input_df_num = input_df[numerical_columns].copy()
|
| 101 |
+
input_df_cat_imputed = cat_imputer.transform(input_df_cat)
|
| 102 |
+
input_df_num_imputed = num_imputer.transform(input_df_num)
|
| 103 |
+
|
| 104 |
+
# Encode categorical features
|
| 105 |
+
input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(),
|
| 106 |
+
columns=encoder.get_feature_names_out(categorical_columns))
|
| 107 |
+
|
| 108 |
+
# Scale numerical features
|
| 109 |
+
input_df_num_scaled = scaler.transform(input_df_num_imputed)
|
| 110 |
+
input_df_num_sc = pd.DataFrame(input_df_num_scaled, columns=numerical_columns)
|
| 111 |
+
|
| 112 |
+
# Combine encoded categorical features and scaled numerical features
|
| 113 |
+
input_df_processed = pd.concat([input_df_num_sc, input_df_cat_encoded], axis=1)
|
| 114 |
+
|
| 115 |
+
# Make predictions using the trained model
|
| 116 |
+
predictions = dt_model.predict(input_df_processed)
|
| 117 |
+
|
| 118 |
+
# Display the predicted sales value to the user
|
| 119 |
+
st.write("Predicted Sales:", predictions[0])
|