Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Load the pre-trained model
|
| 9 |
+
model = tf.keras.models.load_model("model.h5")
|
| 10 |
+
|
| 11 |
+
# Function to process audio and make predictions
|
| 12 |
+
def process_audio(audio_file):
|
| 13 |
+
# Load audio file
|
| 14 |
+
y, sr = librosa.load(audio_file, sr=16000)
|
| 15 |
+
|
| 16 |
+
# Feature extraction
|
| 17 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 18 |
+
mfcc = np.mean(mfcc, axis=1).reshape(1, -1)
|
| 19 |
+
|
| 20 |
+
# Predict inhale/exhale using the model
|
| 21 |
+
prediction = model.predict(mfcc)
|
| 22 |
+
|
| 23 |
+
# For demonstration, return the prediction and a waveform plot
|
| 24 |
+
plt.figure(figsize=(10, 4))
|
| 25 |
+
librosa.display.waveshow(y, sr=sr)
|
| 26 |
+
plt.title("Audio Waveform")
|
| 27 |
+
plt.xlabel("Time (s)")
|
| 28 |
+
plt.ylabel("Amplitude")
|
| 29 |
+
plt.savefig("waveform.png")
|
| 30 |
+
plt.close()
|
| 31 |
+
|
| 32 |
+
return f"Prediction: {np.argmax(prediction)}", "waveform.png"
|
| 33 |
+
|
| 34 |
+
# Define Gradio interface
|
| 35 |
+
with gr.Blocks() as demo:
|
| 36 |
+
gr.Markdown("### Breathe Training Application")
|
| 37 |
+
with gr.Row():
|
| 38 |
+
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
|
| 39 |
+
result_output = gr.Textbox(label="Prediction Result")
|
| 40 |
+
waveform_output = gr.Image(label="Waveform")
|
| 41 |
+
submit_button = gr.Button("Analyze")
|
| 42 |
+
|
| 43 |
+
submit_button.click(
|
| 44 |
+
fn=process_audio,
|
| 45 |
+
inputs=[audio_input],
|
| 46 |
+
outputs=[result_output, waveform_output]
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Run the Gradio app
|
| 50 |
+
demo.launch()
|