Spaces:
Sleeping
Sleeping
Виправлено логіку відображення результатів у Gradio інтерфейсі, щоб різні типи аналізу показували відповідні результати. Додано нові методи форматування для аналізу якості, структури, змісту та якості витягування. Включено повідомлення про виправлення у інтерфейсі для покращення користувацького досвіду.
Browse files- app_interface.py +283 -9
app_interface.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
"""Gradio interface assembly for the MarkItDown Testing Platform
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
@@ -65,7 +65,7 @@ class ApplicationState:
|
|
| 65 |
|
| 66 |
|
| 67 |
class GradioResponseFactory:
|
| 68 |
-
"""Creates UI-ready artifacts from processing results
|
| 69 |
|
| 70 |
def __init__(self, viz_engine: InteractiveVisualizationEngine) -> None:
|
| 71 |
self.viz_engine = viz_engine
|
|
@@ -73,6 +73,14 @@ class GradioResponseFactory:
|
|
| 73 |
def create_success_response(
|
| 74 |
self, response: ProcessingResponse
|
| 75 |
) -> Tuple[str, str, str, JSONDict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
processing_time = response.conversion_result.processing_time or 0
|
| 77 |
content_length = len(response.conversion_result.content)
|
| 78 |
|
|
@@ -97,7 +105,45 @@ class GradioResponseFactory:
|
|
| 97 |
"""
|
| 98 |
|
| 99 |
original_preview = self._generate_document_preview(response.conversion_result.metadata)
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
quick_metrics = self._extract_summary_metrics(response)
|
| 102 |
|
| 103 |
return (
|
|
@@ -107,6 +153,216 @@ class GradioResponseFactory:
|
|
| 107 |
quick_metrics,
|
| 108 |
)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
def create_error_response(
|
| 111 |
self, error_message: str, error_context: Optional[JSONDict] = None
|
| 112 |
) -> Tuple[str, str, str, JSONDict]:
|
|
@@ -291,14 +547,15 @@ class MarkItDownTestingApp:
|
|
| 291 |
with gr.Group(visible=llm_enabled_by_default) as llm_controls:
|
| 292 |
analysis_type = gr.Dropdown(
|
| 293 |
choices=[
|
| 294 |
-
("Quality Analysis", "quality_analysis"),
|
| 295 |
-
("Structure Review", "structure_review"),
|
| 296 |
-
("Content Summary", "content_summary"),
|
| 297 |
-
("Extraction Quality", "extraction_quality"),
|
| 298 |
],
|
| 299 |
value="quality_analysis",
|
| 300 |
label="Analysis Type",
|
| 301 |
interactive=True,
|
|
|
|
| 302 |
)
|
| 303 |
|
| 304 |
model_preference = gr.Dropdown(
|
|
@@ -329,6 +586,21 @@ class MarkItDownTestingApp:
|
|
| 329 |
|
| 330 |
with gr.Column(scale=2):
|
| 331 |
gr.Markdown("### 📊 Processing Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
status_display = gr.HTML()
|
| 333 |
|
| 334 |
with gr.Tabs():
|
|
@@ -336,6 +608,7 @@ class MarkItDownTestingApp:
|
|
| 336 |
original_preview = gr.HTML()
|
| 337 |
|
| 338 |
with gr.TabItem("📝 Markdown Output"):
|
|
|
|
| 339 |
markdown_output = gr.Code(
|
| 340 |
language="markdown",
|
| 341 |
show_label=False,
|
|
@@ -437,6 +710,7 @@ class MarkItDownTestingApp:
|
|
| 437 |
<p>Built with enterprise-grade architecture principles |
|
| 438 |
<a href=\"https://github.com/microsoft/markitdown\">Microsoft MarkItDown</a> |
|
| 439 |
<a href=\"https://ai.google.dev/\">Google Gemini</a></p>
|
|
|
|
| 440 |
</div>
|
| 441 |
"""
|
| 442 |
)
|
|
@@ -863,9 +1137,9 @@ def main() -> None:
|
|
| 863 |
|
| 864 |
__all__ = [
|
| 865 |
"ApplicationFactory",
|
| 866 |
-
"MarkItDownTestingApp",
|
| 867 |
"GradioResponseFactory",
|
| 868 |
"ApplicationState",
|
| 869 |
"create_gradio_app",
|
| 870 |
"main",
|
| 871 |
-
]
|
|
|
|
| 1 |
+
"""Gradio interface assembly for the MarkItDown Testing Platform - ВИПРАВЛЕНА ВЕРСІЯ."""
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
class GradioResponseFactory:
|
| 68 |
+
"""Creates UI-ready artifacts from processing results - ВИПРАВЛЕНА ВЕРСІЯ з правильною логікою відображення."""
|
| 69 |
|
| 70 |
def __init__(self, viz_engine: InteractiveVisualizationEngine) -> None:
|
| 71 |
self.viz_engine = viz_engine
|
|
|
|
| 73 |
def create_success_response(
|
| 74 |
self, response: ProcessingResponse
|
| 75 |
) -> Tuple[str, str, str, JSONDict]:
|
| 76 |
+
"""
|
| 77 |
+
🚨 ВИПРАВЛЕНА ЛОГІКА: Правильне відображення результатів залежно від analysis_type
|
| 78 |
+
|
| 79 |
+
Strategic Architecture Decision:
|
| 80 |
+
- Показуємо AI analysis результат якщо доступний та успішний
|
| 81 |
+
- Різні analysis_type режими показують різні форматовані результати
|
| 82 |
+
- Graceful fallback до base conversion якщо AI недоступний
|
| 83 |
+
"""
|
| 84 |
processing_time = response.conversion_result.processing_time or 0
|
| 85 |
content_length = len(response.conversion_result.content)
|
| 86 |
|
|
|
|
| 105 |
"""
|
| 106 |
|
| 107 |
original_preview = self._generate_document_preview(response.conversion_result.metadata)
|
| 108 |
+
|
| 109 |
+
# 🚨 КРИТИЧНЕ ВИПРАВЛЕННЯ: Правильна логіка вибору контенту для відображення
|
| 110 |
+
if response.analysis_result and response.analysis_result.success:
|
| 111 |
+
# Показуємо AI-обробний результат залежно від analysis_type
|
| 112 |
+
analysis_type_value = response.analysis_result.analysis_type.value
|
| 113 |
+
ai_content = response.analysis_result.content
|
| 114 |
+
|
| 115 |
+
status_html += f"""
|
| 116 |
+
<div style="background: #e8f5e8; border: 1px solid #4caf50; padding: 10px; border-radius: 5px; margin-top: 10px;">
|
| 117 |
+
<strong>🤖 AI Analysis Active:</strong> {analysis_type_value.replace('_', ' ').title()}<br/>
|
| 118 |
+
<strong>Model Used:</strong> {response.analysis_result.model_used.value}<br/>
|
| 119 |
+
<strong>Processing Time:</strong> {response.analysis_result.processing_time:.2f}s
|
| 120 |
+
</div>
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
if analysis_type_value == "quality_analysis":
|
| 124 |
+
markdown_content = self._format_quality_analysis(ai_content)
|
| 125 |
+
elif analysis_type_value == "structure_review":
|
| 126 |
+
markdown_content = self._format_structure_analysis(ai_content)
|
| 127 |
+
elif analysis_type_value == "content_summary":
|
| 128 |
+
markdown_content = self._format_content_summary(ai_content)
|
| 129 |
+
elif analysis_type_value == "extraction_quality":
|
| 130 |
+
markdown_content = self._format_extraction_analysis(ai_content)
|
| 131 |
+
else:
|
| 132 |
+
# Fallback до formatted AI result
|
| 133 |
+
markdown_content = self._format_generic_ai_result(ai_content)
|
| 134 |
+
|
| 135 |
+
else:
|
| 136 |
+
# Fallback до базової конвертації якщо AI недоступний або неуспішний
|
| 137 |
+
markdown_content = response.conversion_result.content
|
| 138 |
+
|
| 139 |
+
if response.analysis_result and not response.analysis_result.success:
|
| 140 |
+
status_html += f"""
|
| 141 |
+
<div style="background: #fff3cd; border: 1px solid #ffc107; padding: 10px; border-radius: 5px; margin-top: 10px;">
|
| 142 |
+
<strong>⚠️ AI Analysis Failed:</strong> {response.analysis_result.error_message}<br/>
|
| 143 |
+
<strong>Showing Base Conversion</strong>
|
| 144 |
+
</div>
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
quick_metrics = self._extract_summary_metrics(response)
|
| 148 |
|
| 149 |
return (
|
|
|
|
| 153 |
quick_metrics,
|
| 154 |
)
|
| 155 |
|
| 156 |
+
def _format_quality_analysis(self, ai_content: Dict) -> str:
|
| 157 |
+
"""Форматує результати Quality Analysis для UI display"""
|
| 158 |
+
|
| 159 |
+
markdown = f"""# 📊 Quality Analysis Results
|
| 160 |
+
|
| 161 |
+
## Overall Assessment
|
| 162 |
+
**Quality Score**: {ai_content.get('overall_score', 'N/A')}/10
|
| 163 |
+
|
| 164 |
+
## Detailed Metrics
|
| 165 |
+
- **Structure Score**: {ai_content.get('structure_score', 'N/A')}/10 - Збереження заголовків, списків, таблиць
|
| 166 |
+
- **Completeness Score**: {ai_content.get('completeness_score', 'N/A')}/10 - Повнота інформації з оригіналу
|
| 167 |
+
- **Accuracy Score**: {ai_content.get('accuracy_score', 'N/A')}/10 - Точність передачі форматування
|
| 168 |
+
- **Readability Score**: {ai_content.get('readability_score', 'N/A')}/10 - Оптимізація для AI-споживання
|
| 169 |
+
|
| 170 |
+
## 🤖 AI Analysis Feedback
|
| 171 |
+
{ai_content.get('detailed_feedback', 'No detailed feedback available')}
|
| 172 |
+
|
| 173 |
+
## 💡 Recommendations
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
recommendations = ai_content.get('recommendations', [])
|
| 177 |
+
if recommendations:
|
| 178 |
+
for i, rec in enumerate(recommendations, 1):
|
| 179 |
+
markdown += f"{i}. {rec}\n"
|
| 180 |
+
else:
|
| 181 |
+
markdown += "No specific recommendations available.\n"
|
| 182 |
+
|
| 183 |
+
# Додаємо detected elements якщо доступні
|
| 184 |
+
detected_elements = ai_content.get('detected_elements', {})
|
| 185 |
+
if detected_elements:
|
| 186 |
+
markdown += f"""
|
| 187 |
+
## 🔍 Detected Document Elements
|
| 188 |
+
"""
|
| 189 |
+
for element, count in detected_elements.items():
|
| 190 |
+
markdown += f"- **{element.replace('_', ' ').title()}**: {count}\n"
|
| 191 |
+
|
| 192 |
+
return markdown
|
| 193 |
+
|
| 194 |
+
def _format_structure_analysis(self, ai_content: Dict) -> str:
|
| 195 |
+
"""Форматує результати Structure Review для UI display"""
|
| 196 |
+
|
| 197 |
+
markdown = f"""# 🏗️ Document Structure Analysis
|
| 198 |
+
|
| 199 |
+
## Document Outline
|
| 200 |
+
```
|
| 201 |
+
{ai_content.get('document_outline', 'No outline available')}
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
## Heading Analysis
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
heading_analysis = ai_content.get('heading_analysis', {})
|
| 208 |
+
if heading_analysis:
|
| 209 |
+
for level, count in heading_analysis.items():
|
| 210 |
+
markdown += f"- **{level}**: {count} occurrences\n"
|
| 211 |
+
else:
|
| 212 |
+
markdown += "No heading analysis available\n"
|
| 213 |
+
|
| 214 |
+
markdown += f"""
|
| 215 |
+
## Organization Score
|
| 216 |
+
**Structure Quality**: {ai_content.get('organization_score', 'N/A')}/10
|
| 217 |
+
|
| 218 |
+
## List Analysis
|
| 219 |
+
"""
|
| 220 |
+
|
| 221 |
+
list_analysis = ai_content.get('list_analysis', {})
|
| 222 |
+
if list_analysis:
|
| 223 |
+
markdown += f"- **Total Lists**: {list_analysis.get('total_lists', 0)}\n"
|
| 224 |
+
markdown += f"- **Nested Lists**: {list_analysis.get('nested_lists', 0)}\n"
|
| 225 |
+
markdown += f"- **List Items**: {list_analysis.get('total_items', 0)}\n"
|
| 226 |
+
|
| 227 |
+
markdown += f"""
|
| 228 |
+
## Table Analysis
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
table_analysis = ai_content.get('table_analysis', {})
|
| 232 |
+
if table_analysis:
|
| 233 |
+
markdown += f"- **Total Tables**: {table_analysis.get('table_count', 0)}\n"
|
| 234 |
+
markdown += f"- **Table Quality**: {table_analysis.get('formatting_quality', 'N/A')}\n"
|
| 235 |
+
|
| 236 |
+
markdown += f"""
|
| 237 |
+
## 💡 Structure Recommendations
|
| 238 |
+
"""
|
| 239 |
+
|
| 240 |
+
recommendations = ai_content.get('structure_recommendations', [])
|
| 241 |
+
if recommendations:
|
| 242 |
+
for i, rec in enumerate(recommendations, 1):
|
| 243 |
+
markdown += f"{i}. {rec}\n"
|
| 244 |
+
else:
|
| 245 |
+
markdown += "Document structure is well-organized.\n"
|
| 246 |
+
|
| 247 |
+
return markdown
|
| 248 |
+
|
| 249 |
+
def _format_content_summary(self, ai_content: Dict) -> str:
|
| 250 |
+
"""Форматує результати Content Summary для UI display"""
|
| 251 |
+
|
| 252 |
+
markdown = f"""# 📝 Content Summary & Analysis
|
| 253 |
+
|
| 254 |
+
## Executive Summary
|
| 255 |
+
{ai_content.get('executive_summary', 'No summary available')}
|
| 256 |
+
|
| 257 |
+
## Main Topics
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
topics = ai_content.get('main_topics', [])
|
| 261 |
+
if topics:
|
| 262 |
+
for topic in topics:
|
| 263 |
+
markdown += f"- {topic}\n"
|
| 264 |
+
else:
|
| 265 |
+
markdown += "No main topics identified\n"
|
| 266 |
+
|
| 267 |
+
markdown += f"""
|
| 268 |
+
## Document Classification
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
classification = ai_content.get('document_classification', {})
|
| 272 |
+
if classification:
|
| 273 |
+
markdown += f"- **Type**: {classification.get('type', 'Unknown')}\n"
|
| 274 |
+
markdown += f"- **Purpose**: {classification.get('purpose', 'Unknown')}\n"
|
| 275 |
+
markdown += f"- **Target Audience**: {classification.get('audience', 'Unknown')}\n"
|
| 276 |
+
|
| 277 |
+
markdown += f"""
|
| 278 |
+
## Content Quality Score
|
| 279 |
+
**Information Value**: {ai_content.get('content_quality', 'N/A')}/10
|
| 280 |
+
|
| 281 |
+
## Key Information
|
| 282 |
+
"""
|
| 283 |
+
|
| 284 |
+
key_info = ai_content.get('key_information', [])
|
| 285 |
+
if key_info:
|
| 286 |
+
for info in key_info:
|
| 287 |
+
markdown += f"- {info}\n"
|
| 288 |
+
else:
|
| 289 |
+
markdown += "No key information extracted\n"
|
| 290 |
+
|
| 291 |
+
# Додаємо content metrics якщо доступні
|
| 292 |
+
content_metrics = ai_content.get('content_metrics', {})
|
| 293 |
+
if content_metrics:
|
| 294 |
+
markdown += f"""
|
| 295 |
+
## Content Metrics
|
| 296 |
+
- **Word Count**: {content_metrics.get('word_count', 'N/A')}
|
| 297 |
+
- **Complexity Level**: {content_metrics.get('complexity_level', 'N/A')}
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
return markdown
|
| 301 |
+
|
| 302 |
+
def _format_extraction_analysis(self, ai_content: Dict) -> str:
|
| 303 |
+
"""Форматує результати Extraction Quality для UI display"""
|
| 304 |
+
|
| 305 |
+
markdown = f"""# 🔍 Extraction Quality Assessment
|
| 306 |
+
|
| 307 |
+
## Overall Extraction Score
|
| 308 |
+
**Quality Rating**: {ai_content.get('extraction_score', 'N/A')}/10
|
| 309 |
+
|
| 310 |
+
## Data Accuracy Assessment
|
| 311 |
+
{ai_content.get('data_accuracy', 'No accuracy assessment available')}
|
| 312 |
+
|
| 313 |
+
## Context Preservation
|
| 314 |
+
**Meaning Retention**: {ai_content.get('context_preservation', 'No context analysis available')}
|
| 315 |
+
|
| 316 |
+
## Formatting Quality
|
| 317 |
+
**Original Structure**: {ai_content.get('formatting_quality', 'No formatting analysis available')}
|
| 318 |
+
|
| 319 |
+
## Completeness Indicators
|
| 320 |
+
{ai_content.get('completeness_indicators', 'No completeness data available')}
|
| 321 |
+
|
| 322 |
+
## Conversion Artifacts
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
artifacts = ai_content.get('conversion_artifacts', [])
|
| 326 |
+
if artifacts:
|
| 327 |
+
for artifact in artifacts:
|
| 328 |
+
markdown += f"- ⚠️ {artifact}\n"
|
| 329 |
+
else:
|
| 330 |
+
markdown += "✅ No conversion artifacts detected\n"
|
| 331 |
+
|
| 332 |
+
markdown += f"""
|
| 333 |
+
## 💡 Quality Recommendations
|
| 334 |
+
"""
|
| 335 |
+
|
| 336 |
+
recommendations = ai_content.get('quality_recommendations', [])
|
| 337 |
+
if recommendations:
|
| 338 |
+
for i, rec in enumerate(recommendations, 1):
|
| 339 |
+
markdown += f"{i}. {rec}\n"
|
| 340 |
+
else:
|
| 341 |
+
markdown += "Extraction quality is satisfactory.\n"
|
| 342 |
+
|
| 343 |
+
# Додаємо confidence level
|
| 344 |
+
confidence = ai_content.get('confidence_level', 'N/A')
|
| 345 |
+
markdown += f"""
|
| 346 |
+
## Analysis Confidence
|
| 347 |
+
**Confidence Level**: {confidence}
|
| 348 |
+
"""
|
| 349 |
+
|
| 350 |
+
return markdown
|
| 351 |
+
|
| 352 |
+
def _format_generic_ai_result(self, ai_content: Dict) -> str:
|
| 353 |
+
"""Generic formatter для невідомих analysis types"""
|
| 354 |
+
|
| 355 |
+
markdown = f"""# 🤖 AI Analysis Results
|
| 356 |
+
|
| 357 |
+
## Analysis Output
|
| 358 |
+
```json
|
| 359 |
+
{ai_content}
|
| 360 |
+
```
|
| 361 |
+
|
| 362 |
+
*This analysis type uses a generic formatter. Consider adding specific formatting for better readability.*
|
| 363 |
+
"""
|
| 364 |
+
return markdown
|
| 365 |
+
|
| 366 |
def create_error_response(
|
| 367 |
self, error_message: str, error_context: Optional[JSONDict] = None
|
| 368 |
) -> Tuple[str, str, str, JSONDict]:
|
|
|
|
| 547 |
with gr.Group(visible=llm_enabled_by_default) as llm_controls:
|
| 548 |
analysis_type = gr.Dropdown(
|
| 549 |
choices=[
|
| 550 |
+
("Quality Analysis - Комплексна оцінка якості конвертації", "quality_analysis"),
|
| 551 |
+
("Structure Review - Фокус на збереження ієрархії документа", "structure_review"),
|
| 552 |
+
("Content Summary - Тематичний аналіз та ключові інсайти", "content_summary"),
|
| 553 |
+
("Extraction Quality - Оцінка збереження даних", "extraction_quality"),
|
| 554 |
],
|
| 555 |
value="quality_analysis",
|
| 556 |
label="Analysis Type",
|
| 557 |
interactive=True,
|
| 558 |
+
info="🚨 ВИПРАВЛЕНО: Тепер різні режими показуватимуть різні результати!"
|
| 559 |
)
|
| 560 |
|
| 561 |
model_preference = gr.Dropdown(
|
|
|
|
| 586 |
|
| 587 |
with gr.Column(scale=2):
|
| 588 |
gr.Markdown("### 📊 Processing Results")
|
| 589 |
+
|
| 590 |
+
# 🚨 ДОДАНО ВАЖЛИВЕ ПОВІДОМЛЕННЯ ПРО ВИПРАВЛЕННЯ
|
| 591 |
+
gr.HTML("""
|
| 592 |
+
<div style="background: #d1ecf1; border: 1px solid #bee5eb; padding: 15px; border-radius: 8px; margin-bottom: 20px;">
|
| 593 |
+
<h4 style="margin: 0 0 10px 0; color: #0c5460;">🔧 Architectural Fix Applied</h4>
|
| 594 |
+
<p style="margin: 0; color: #0c5460;"><strong>Fixed Issue:</strong> Different analysis types now show different results in Markdown Output!</p>
|
| 595 |
+
<ul style="margin: 10px 0 0 20px; color: #0c5460;">
|
| 596 |
+
<li><strong>Quality Analysis:</strong> Shows detailed quality metrics and AI feedback</li>
|
| 597 |
+
<li><strong>Structure Review:</strong> Shows document structure analysis and organization</li>
|
| 598 |
+
<li><strong>Content Summary:</strong> Shows thematic analysis and key insights</li>
|
| 599 |
+
<li><strong>Extraction Quality:</strong> Shows data preservation assessment</li>
|
| 600 |
+
</ul>
|
| 601 |
+
</div>
|
| 602 |
+
""")
|
| 603 |
+
|
| 604 |
status_display = gr.HTML()
|
| 605 |
|
| 606 |
with gr.Tabs():
|
|
|
|
| 608 |
original_preview = gr.HTML()
|
| 609 |
|
| 610 |
with gr.TabItem("📝 Markdown Output"):
|
| 611 |
+
gr.Markdown("**Результати обробки будуть показані тут з урахуванням обраного Analysis Type**")
|
| 612 |
markdown_output = gr.Code(
|
| 613 |
language="markdown",
|
| 614 |
show_label=False,
|
|
|
|
| 710 |
<p>Built with enterprise-grade architecture principles |
|
| 711 |
<a href=\"https://github.com/microsoft/markitdown\">Microsoft MarkItDown</a> |
|
| 712 |
<a href=\"https://ai.google.dev/\">Google Gemini</a></p>
|
| 713 |
+
<p><strong>🔧 Critical Fix Applied:</strong> Different analysis types now show different results!</p>
|
| 714 |
</div>
|
| 715 |
"""
|
| 716 |
)
|
|
|
|
| 1137 |
|
| 1138 |
__all__ = [
|
| 1139 |
"ApplicationFactory",
|
| 1140 |
+
"MarkItDownTestingApp",
|
| 1141 |
"GradioResponseFactory",
|
| 1142 |
"ApplicationState",
|
| 1143 |
"create_gradio_app",
|
| 1144 |
"main",
|
| 1145 |
+
]
|