Spaces:
Build error
Build error
Commit
·
9c5a6d0
0
Parent(s):
Initial commit without sensitive data
Browse files- .gitignore +5 -0
- .gradio/certificate.pem +31 -0
- README.md +12 -0
- app.py +219 -0
- create_embeddings.py +44 -0
- embeddings.npy +0 -0
- messages.csv +13 -0
- messages_with_labels.csv +13 -0
- requirements.txt +5 -0
- test_messages.py +24 -0
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv/
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.pyc
|
| 4 |
+
.env
|
| 5 |
+
|
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: SDC Multi Classifier
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.13.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Dict, List
|
| 6 |
+
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
# Load environment variables
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# 1) Вкажіть свій OpenAI ключ
|
| 15 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 16 |
+
|
| 17 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
##############################################################################
|
| 21 |
+
# 1. Вихідні дані: JSON із "хінтами"
|
| 22 |
+
##############################################################################
|
| 23 |
+
classes_json = {
|
| 24 |
+
"Pain": [
|
| 25 |
+
"ache", "aches", "hurts", "pain", "painful", "sore"
|
| 26 |
+
# ...
|
| 27 |
+
],
|
| 28 |
+
"Chest pain": [
|
| 29 |
+
"aches in my chest", "chest pain", "chest hurts", "sternum pain"
|
| 30 |
+
],
|
| 31 |
+
"Physical Activity": [
|
| 32 |
+
"exercise", "walking", "running", "biking"
|
| 33 |
+
],
|
| 34 |
+
"Office visit": [
|
| 35 |
+
"appointment scheduled", "annual checkup", "office visit"
|
| 36 |
+
],
|
| 37 |
+
# ...
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
##############################################################################
|
| 41 |
+
# 2. Глобальні змінні (спрощено)
|
| 42 |
+
##############################################################################
|
| 43 |
+
df = None
|
| 44 |
+
embeddings = None
|
| 45 |
+
class_signatures = None
|
| 46 |
+
|
| 47 |
+
##############################################################################
|
| 48 |
+
# 3. Функція для завантаження даних
|
| 49 |
+
##############################################################################
|
| 50 |
+
def load_data(csv_path: str = "messages.csv", emb_path: str = "embeddings.npy"):
|
| 51 |
+
global df, embeddings
|
| 52 |
+
df_local = pd.read_csv(csv_path)
|
| 53 |
+
emb_local = np.load(emb_path)
|
| 54 |
+
assert len(df_local) == len(emb_local), "CSV і embeddings різної довжини!"
|
| 55 |
+
|
| 56 |
+
df_local["Target"] = "Unlabeled"
|
| 57 |
+
|
| 58 |
+
# Нормалізація embeddings
|
| 59 |
+
emb_local = (emb_local - emb_local.mean(axis=0)) / emb_local.std(axis=0)
|
| 60 |
+
|
| 61 |
+
df = df_local
|
| 62 |
+
embeddings = emb_local
|
| 63 |
+
|
| 64 |
+
##############################################################################
|
| 65 |
+
# 4. Виклик OpenAI для отримання одного embedding
|
| 66 |
+
##############################################################################
|
| 67 |
+
def get_openai_embedding(text: str, model_name: str = "text-embedding-3-small") -> list:
|
| 68 |
+
response = client.embeddings.create(
|
| 69 |
+
input=text,
|
| 70 |
+
model=model_name
|
| 71 |
+
)
|
| 72 |
+
return response.data[0].embedding
|
| 73 |
+
|
| 74 |
+
##############################################################################
|
| 75 |
+
# 5. Отримати embeddings для списку фраз (хінтів) і усереднити
|
| 76 |
+
##############################################################################
|
| 77 |
+
def embed_hints(hint_list: List[str], model_name: str) -> np.ndarray:
|
| 78 |
+
emb_list = []
|
| 79 |
+
for hint in hint_list:
|
| 80 |
+
emb = get_openai_embedding(hint, model_name=model_name)
|
| 81 |
+
emb_list.append(emb)
|
| 82 |
+
return np.array(emb_list, dtype=np.float32)
|
| 83 |
+
|
| 84 |
+
##############################################################################
|
| 85 |
+
# 6. Будуємо signatures для кожного класу
|
| 86 |
+
##############################################################################
|
| 87 |
+
def build_class_signatures(model_name: str):
|
| 88 |
+
global class_signatures
|
| 89 |
+
signatures = {}
|
| 90 |
+
for cls_name, hints in classes_json.items():
|
| 91 |
+
if not hints:
|
| 92 |
+
continue
|
| 93 |
+
arr = embed_hints(hints, model_name=model_name)
|
| 94 |
+
signatures[cls_name] = arr.mean(axis=0)
|
| 95 |
+
class_signatures = signatures
|
| 96 |
+
return "Signatures побудовано!"
|
| 97 |
+
|
| 98 |
+
##############################################################################
|
| 99 |
+
# 7. Функція класифікації одного рядка (dot product)
|
| 100 |
+
##############################################################################
|
| 101 |
+
def predict_class(text_embedding: np.ndarray, signatures: Dict[str, np.ndarray]) -> str:
|
| 102 |
+
best_label = "Unknown"
|
| 103 |
+
best_score = float("-inf")
|
| 104 |
+
for cls, sign in signatures.items():
|
| 105 |
+
score = np.dot(text_embedding, sign)
|
| 106 |
+
if score > best_score:
|
| 107 |
+
best_score = score
|
| 108 |
+
best_label = cls
|
| 109 |
+
return best_label
|
| 110 |
+
|
| 111 |
+
##############################################################################
|
| 112 |
+
# 8. Класифікація відфільтрованих рядків
|
| 113 |
+
##############################################################################
|
| 114 |
+
def classify_rows(filter_substring: str):
|
| 115 |
+
global df, embeddings, class_signatures
|
| 116 |
+
|
| 117 |
+
if class_signatures is None:
|
| 118 |
+
return "Спочатку збудуйте signatures!"
|
| 119 |
+
|
| 120 |
+
if df is None or embeddings is None:
|
| 121 |
+
return "Дані не завантажені! Спочатку викличте load_data."
|
| 122 |
+
|
| 123 |
+
if filter_substring:
|
| 124 |
+
filtered_idx = df[df["Message"].str.contains(filter_substring, case=False, na=False)].index
|
| 125 |
+
else:
|
| 126 |
+
filtered_idx = df.index
|
| 127 |
+
|
| 128 |
+
for i in filtered_idx:
|
| 129 |
+
emb_vec = embeddings[i]
|
| 130 |
+
pred = predict_class(emb_vec, class_signatures)
|
| 131 |
+
df.at[i, "Target"] = pred
|
| 132 |
+
|
| 133 |
+
result_df = df.loc[filtered_idx, ["Message", "Target"]].copy()
|
| 134 |
+
return result_df.reset_index(drop=True)
|
| 135 |
+
|
| 136 |
+
##############################################################################
|
| 137 |
+
# 9. Збереження CSV
|
| 138 |
+
##############################################################################
|
| 139 |
+
def save_data():
|
| 140 |
+
global df
|
| 141 |
+
if df is None:
|
| 142 |
+
return "Дані відсутні!"
|
| 143 |
+
df.to_csv("messages_with_labels.csv", index=False)
|
| 144 |
+
return "Файл 'messages_with_labels.csv' збережено!"
|
| 145 |
+
|
| 146 |
+
##############################################################################
|
| 147 |
+
# 10. Gradio UI
|
| 148 |
+
##############################################################################
|
| 149 |
+
def ui_load_data(csv_path, emb_path):
|
| 150 |
+
load_data(csv_path, emb_path)
|
| 151 |
+
return f"Data loaded from {csv_path} and {emb_path}. Rows: {len(df)}"
|
| 152 |
+
|
| 153 |
+
def ui_build_signatures(model_name):
|
| 154 |
+
msg = build_class_signatures(model_name)
|
| 155 |
+
return msg
|
| 156 |
+
|
| 157 |
+
def ui_classify_data(filter_substring):
|
| 158 |
+
result = classify_rows(filter_substring)
|
| 159 |
+
if isinstance(result, str):
|
| 160 |
+
return result
|
| 161 |
+
return result
|
| 162 |
+
|
| 163 |
+
def ui_save_data():
|
| 164 |
+
return save_data()
|
| 165 |
+
|
| 166 |
+
def main():
|
| 167 |
+
import gradio as gr
|
| 168 |
+
|
| 169 |
+
with gr.Blocks() as demo:
|
| 170 |
+
gr.Markdown("# SDC Classifier з Gradio")
|
| 171 |
+
gr.Markdown("## 1) Завантаження даних")
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
csv_input = gr.Textbox(value="messages.csv", label="CSV-файл")
|
| 175 |
+
emb_input = gr.Textbox(value="embeddings.npy", label="Numpy Embeddings")
|
| 176 |
+
load_btn = gr.Button("Load data")
|
| 177 |
+
|
| 178 |
+
load_output = gr.Label(label="Loading result")
|
| 179 |
+
|
| 180 |
+
load_btn.click(fn=ui_load_data, inputs=[csv_input, emb_input], outputs=load_output)
|
| 181 |
+
|
| 182 |
+
gr.Markdown("## 2) Побудова Class Signatures")
|
| 183 |
+
# openai_key_in = gr.Textbox(label="OpenAI API Key", type="password")
|
| 184 |
+
model_choice = gr.Dropdown(choices=["text-embedding-3-large","text-embedding-3-small"],
|
| 185 |
+
value="text-embedding-3-small", label="OpenAI model")
|
| 186 |
+
build_btn = gr.Button("Build signatures")
|
| 187 |
+
build_out = gr.Label(label="Signatures")
|
| 188 |
+
|
| 189 |
+
build_btn.click(fn=ui_build_signatures, inputs=[model_choice], outputs=build_out)
|
| 190 |
+
|
| 191 |
+
gr.Markdown("## 3) Класифікація")
|
| 192 |
+
filter_in = gr.Textbox(label="Filter substring (optional)")
|
| 193 |
+
classify_btn = gr.Button("Classify")
|
| 194 |
+
classify_out = gr.Dataframe(label="Result (Message / Target)")
|
| 195 |
+
|
| 196 |
+
classify_btn.click(fn=ui_classify_data, inputs=[filter_in], outputs=[classify_out])
|
| 197 |
+
|
| 198 |
+
gr.Markdown("## 4) Зберегти CSV")
|
| 199 |
+
save_btn = gr.Button("Save labeled data")
|
| 200 |
+
save_out = gr.Label()
|
| 201 |
+
|
| 202 |
+
save_btn.click(fn=ui_save_data, inputs=[], outputs=save_out)
|
| 203 |
+
|
| 204 |
+
gr.Markdown("""
|
| 205 |
+
### Опис:
|
| 206 |
+
1. Натисніть 'Load data', щоб завантажити ваші дані (CSV + embeddings).
|
| 207 |
+
2. Укажіть OpenAI API модель, натисніть 'Build signatures'.
|
| 208 |
+
3. Вкажіть фільтр (необов'язково), натисніть 'Classify'.
|
| 209 |
+
Отримаєте таблицю з полем Target.
|
| 210 |
+
4. 'Save labeled data' збереже 'messages_with_labels.csv'.
|
| 211 |
+
""")
|
| 212 |
+
|
| 213 |
+
demo = gr.Blocks(title="SDC Multi Classifier")
|
| 214 |
+
|
| 215 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
| 216 |
+
demo.launch()
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
main()
|
create_embeddings.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
# Load environment variables
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# 1) Вкажіть свій OpenAI ключ
|
| 14 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 15 |
+
|
| 16 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# 2) Задайте назви файлів
|
| 20 |
+
CSV_FILE = "messages_with_labels.csv" # ваш CSV із колонкою "Message"
|
| 21 |
+
OUTPUT_EMB_FILE = "embeddings.npy"
|
| 22 |
+
MODEL_NAME = "text-embedding-3-small" # або іншу модель
|
| 23 |
+
|
| 24 |
+
# 3) Зчитайте CSV
|
| 25 |
+
df = pd.read_csv(CSV_FILE)
|
| 26 |
+
texts = df["Message"].fillna("").tolist() # на випадок, якщо є NaN
|
| 27 |
+
|
| 28 |
+
embeddings_list = []
|
| 29 |
+
|
| 30 |
+
# 4) Викличте OpenAI API для кожного рядка
|
| 31 |
+
for i, text in enumerate(texts):
|
| 32 |
+
# Результат запиту до OpenAI
|
| 33 |
+
response = client.embeddings.create(
|
| 34 |
+
input=text,
|
| 35 |
+
model=MODEL_NAME
|
| 36 |
+
)
|
| 37 |
+
emb = response.data[0].embedding
|
| 38 |
+
embeddings_list.append(emb)
|
| 39 |
+
|
| 40 |
+
# 5) Переведемо список у np.array та збережемо
|
| 41 |
+
embedding_matrix = np.array(embeddings_list, dtype=np.float32)
|
| 42 |
+
np.save(OUTPUT_EMB_FILE, embedding_matrix)
|
| 43 |
+
|
| 44 |
+
print(f"Embeddings saved to {OUTPUT_EMB_FILE} with shape {embedding_matrix.shape}")
|
embeddings.npy
ADDED
|
Binary file (73.9 kB). View file
|
|
|
messages.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Message,Target
|
| 2 |
+
"I have a strong ache in my left arm",Pain
|
| 3 |
+
"My chest hurts sometimes, especially when I breathe deeply",Chest pain
|
| 4 |
+
"Just finished running 3 miles",Physical Activity
|
| 5 |
+
"I scheduled an appointment next week for my annual checkup",Office visit
|
| 6 |
+
"Feel a bit sore in my legs after walking",Pain
|
| 7 |
+
"Went biking for 10 miles this morning",Physical Activity
|
| 8 |
+
"Annual checkup with my doctor is planned",Office visit
|
| 9 |
+
"There's a sternum pain in the center of my chest",Chest pain
|
| 10 |
+
"I'm going to exercise daily",Physical Activity
|
| 11 |
+
"My back is painful when I wake up",Pain
|
| 12 |
+
"I have no health issues right now",Unknown
|
| 13 |
+
"I'm here to schedule an office visit for next month",Office visit
|
messages_with_labels.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Message,Target
|
| 2 |
+
I have a strong ache in my left arm,Pain
|
| 3 |
+
"My chest hurts sometimes, especially when I breathe deeply",Chest pain
|
| 4 |
+
Just finished running 3 miles,Physical Activity
|
| 5 |
+
I scheduled an appointment next week for my annual checkup,Office visit
|
| 6 |
+
Feel a bit sore in my legs after walking,Pain
|
| 7 |
+
Went biking for 10 miles this morning,Physical Activity
|
| 8 |
+
Annual checkup with my doctor is planned,Office visit
|
| 9 |
+
There's a sternum pain in the center of my chest,Chest pain
|
| 10 |
+
I'm going to exercise daily,Physical Activity
|
| 11 |
+
My back is painful when I wake up,Chest pain
|
| 12 |
+
I have no health issues right now,Physical Activity
|
| 13 |
+
I'm here to schedule an office visit for next month,Office visit
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
openai
|
| 3 |
+
pandas
|
| 4 |
+
numpy
|
| 5 |
+
python-dotenv
|
test_messages.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
def test_messages_with_labels(path_csv="messages_with_labels.csv"):
|
| 4 |
+
# 1) Завантажуємо CSV
|
| 5 |
+
df_labeled = pd.read_csv(path_csv)
|
| 6 |
+
|
| 7 |
+
# 2) Подивимося на перші 5 рядків
|
| 8 |
+
print("Перші 5 рядків з messages_with_labels.csv:")
|
| 9 |
+
print(df_labeled.head())
|
| 10 |
+
|
| 11 |
+
# 3) Порахуємо, скільки в кожному класі (Target)
|
| 12 |
+
print("\nРозподіл за мітками (Target):")
|
| 13 |
+
print(df_labeled["Target"].value_counts())
|
| 14 |
+
|
| 15 |
+
# (Додатково) Якщо у вас є справжня колонка, напр. "TrueLabel", можна порахувати Accuracy
|
| 16 |
+
if "TrueLabel" in df_labeled.columns:
|
| 17 |
+
accuracy = (df_labeled["Target"] == df_labeled["TrueLabel"]).mean()
|
| 18 |
+
print(f"\nAccuracy (Target vs TrueLabel): {accuracy:.2%}")
|
| 19 |
+
else:
|
| 20 |
+
print("\nКолонка 'TrueLabel' відсутня — не можемо автоматично оцінити точність.")
|
| 21 |
+
|
| 22 |
+
# Викликаємо:
|
| 23 |
+
if __name__ == "__main__":
|
| 24 |
+
test_messages_with_labels()
|