Aduc-sdr-VIDEO / gemini_helpers.py
Carlexxx
aduc-sdr
3470339
# gemini_helpers.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
# sob os termos da Licença Pública Geral Affero GNU como publicada pela
# Free Software Foundation, seja a versão 3 da Licença, ou
# (a seu critério) qualquer versão posterior.
#
# AVISO DE PATENTE PENDENTE: O método e sistema ADUC implementado neste
# software está em processo de patenteamento. Consulte NOTICE.md.
import os
import logging
import json
import gradio as gr
from PIL import Image
import google.generativeai as genai
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def robust_json_parser(raw_text: str) -> dict:
clean_text = raw_text.strip()
try:
# Tenta encontrar o JSON delimitado por ```json ... ```
match = re.search(r'```json\s*(\{.*?\})\s*```', clean_text, re.DOTALL)
if match:
json_str = match.group(1)
return json.loads(json_str)
# Se não encontrar, tenta encontrar o primeiro '{' e o último '}'
start_index = clean_text.find('{')
end_index = clean_text.rfind('}')
if start_index != -1 and end_index != -1 and end_index > start_index:
json_str = clean_text[start_index : end_index + 1]
return json.loads(json_str)
else:
raise ValueError("Nenhum objeto JSON válido foi encontrado na resposta da IA.")
except json.JSONDecodeError as e:
logger.error(f"Falha ao decodificar JSON. A IA retornou o seguinte texto:\n---\n{raw_text}\n---")
raise ValueError(f"A IA retornou um formato de JSON inválido: {e}")
class GeminiSingleton:
def __init__(self):
self.api_key = os.environ.get("GEMINI_API_KEY")
if self.api_key:
genai.configure(api_key=self.api_key)
# Modelo mais recente e capaz para tarefas complexas de visão e raciocínio.
self.model = genai.GenerativeModel('gemini-2.5-flash')
logger.info("Especialista Gemini (1.5 Pro) inicializado com sucesso.")
else:
self.model = None
logger.warning("Chave da API Gemini não encontrada. Especialista desativado.")
def _check_model(self):
if not self.model:
raise gr.Error("A chave da API do Google Gemini não está configurada (GEMINI_API_KEY).")
def _read_prompt_template(self, filename: str) -> str:
try:
with open(os.path.join("prompts", filename), "r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
raise gr.Error(f"Arquivo de prompt não encontrado: prompts/{filename}")
def generate_storyboard(self, prompt: str, num_keyframes: int, ref_image_paths: list[str]) -> list[str]:
self._check_model()
try:
template = self._read_prompt_template("unified_storyboard_prompt.txt")
storyboard_prompt = template.format(user_prompt=prompt, num_fragments=num_keyframes)
model_contents = [storyboard_prompt] + [Image.open(p) for p in ref_image_paths]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (generate_storyboard) ---\n{response.text}\n--------------------")
storyboard_data = robust_json_parser(response.text)
storyboard = storyboard_data.get("scene_storyboard", [])
if not storyboard or len(storyboard) != num_keyframes: raise ValueError(f"Número incorreto de cenas gerado.")
return storyboard
except Exception as e:
raise gr.Error(f"O Roteirista (Gemini) falhou: {e}")
def select_keyframes_from_pool(self, storyboard: list, base_image_paths: list[str], pool_image_paths: list[str]) -> list[str]:
self._check_model()
if not pool_image_paths:
raise gr.Error("O 'banco de imagens' (Imagens Adicionais) está vazio.")
try:
template = self._read_prompt_template("keyframe_selection_prompt.txt")
image_map = {f"IMG-{i+1}": path for i, path in enumerate(pool_image_paths)}
base_image_map = {f"BASE-{i+1}": path for i, path in enumerate(base_image_paths)}
model_contents = ["# Reference Images (Story Base)"]
for identifier, path in base_image_map.items():
model_contents.extend([f"Identifier: {identifier}", Image.open(path)])
model_contents.append("\n# Image Pool (Scene Bank)")
for identifier, path in image_map.items():
model_contents.extend([f"Identifier: {identifier}", Image.open(path)])
storyboard_str = "\n".join([f"- Scene {i+1}: {s}" for i, s in enumerate(storyboard)])
selection_prompt = template.format(storyboard_str=storyboard_str, image_identifiers=list(image_map.keys()))
model_contents.append(selection_prompt)
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (select_keyframes_from_pool) ---\n{response.text}\n--------------------")
selection_data = robust_json_parser(response.text)
selected_identifiers = selection_data.get("selected_image_identifiers", [])
if len(selected_identifiers) != len(storyboard):
raise ValueError("A IA não selecionou o número correto de imagens para as cenas.")
selected_paths = [image_map[identifier] for identifier in selected_identifiers]
return selected_paths
except Exception as e:
raise gr.Error(f"O Fotógrafo (Gemini) falhou ao selecionar as imagens: {e}")
def get_anticipatory_keyframe_prompt(self, global_prompt: str, scene_history: str, current_scene_desc: str, future_scene_desc: str, last_image_path: str, fixed_ref_paths: list[str]) -> str:
self._check_model()
try:
template = self._read_prompt_template("anticipatory_keyframe_prompt.txt")
director_prompt = template.format(
historico_prompt=scene_history,
cena_atual=current_scene_desc,
cena_futura=future_scene_desc
)
model_contents = [
"# CONTEXTO:",
f"- Global Story Goal: {global_prompt}",
"# VISUAL ASSETS:",
"Current Base Image [IMG-BASE]:",
Image.open(last_image_path)
]
ref_counter = 1
for path in fixed_ref_paths:
if path != last_image_path:
model_contents.extend([f"General Reference Image [IMG-REF-{ref_counter}]:", Image.open(path)])
ref_counter += 1
model_contents.append(director_prompt)
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_anticipatory_keyframe_prompt) ---\n{response.text}\n--------------------")
final_flux_prompt = response.text.strip()
return final_flux_prompt
except Exception as e:
raise gr.Error(f"O Diretor de Arte (Gemini) falhou: {e}")
def get_initial_motion_prompt(self, user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str) -> str:
"""Gera o prompt de movimento para a PRIMEIRA transição, que não tem um 'passado'."""
self._check_model()
try:
template = self._read_prompt_template("initial_motion_prompt.txt")
prompt_text = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
model_contents = [
prompt_text,
"START Image:",
Image.open(start_image_path),
"DESTINATION Image:",
Image.open(destination_image_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_initial_motion_prompt) ---\n{response.text}\n--------------------")
return response.text.strip()
except Exception as e:
raise gr.Error(f"O Cineasta Inicial (Gemini) falhou: {e}")
def get_cinematic_decision(self, global_prompt: str, story_history: str,
past_keyframe_path: str, present_keyframe_path: str, future_keyframe_path: str,
past_scene_desc: str, present_scene_desc: str, future_scene_desc: str) -> dict:
"""
Atua como um 'Cineasta', analisando passado, presente e futuro para tomar decisões
de edição e gerar prompts de movimento detalhados.
"""
self._check_model()
try:
template = self._read_prompt_template("cinematic_director_prompt.txt")
prompt_text = template.format(
global_prompt=global_prompt,
story_history=story_history,
past_scene_desc=past_scene_desc,
present_scene_desc=present_scene_desc,
future_scene_desc=future_scene_desc
)
model_contents = [
prompt_text,
"[PAST_IMAGE]:", Image.open(past_keyframe_path),
"[PRESENT_IMAGE]:", Image.open(present_keyframe_path),
"[FUTURE_IMAGE]:", Image.open(future_keyframe_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_cinematic_decision) ---\n{response.text}\n--------------------")
decision_data = robust_json_parser(response.text)
if "transition_type" not in decision_data or "motion_prompt" not in decision_data:
raise ValueError("Resposta da IA (Cineasta) está mal formatada. Faltam 'transition_type' ou 'motion_prompt'.")
return decision_data
except Exception as e:
# Fallback para uma decisão segura em caso de erro
logger.error(f"O Diretor de Cinema (Gemini) falhou: {e}. Usando fallback para 'continuous'.")
return {
"transition_type": "continuous",
"motion_prompt": f"A smooth, continuous cinematic transition from '{present_scene_desc}' to '{future_scene_desc}'."
}
def get_sound_director_prompt(self, audio_history: str,
past_keyframe_path: str, present_keyframe_path: str, future_keyframe_path: str,
present_scene_desc: str, motion_prompt: str, future_scene_desc: str) -> str:
"""
Atua como um 'Diretor de Som', analisando o contexto completo para criar um prompt
de áudio imersivo e contínuo para a cena atual.
"""
self._check_model()
try:
template = self._read_prompt_template("sound_director_prompt.txt")
prompt_text = template.format(
audio_history=audio_history,
present_scene_desc=present_scene_desc,
motion_prompt=motion_prompt,
future_scene_desc=future_scene_desc
)
model_contents = [
prompt_text,
"[PAST_IMAGE]:", Image.open(past_keyframe_path),
"[PRESENT_IMAGE]:", Image.open(present_keyframe_path),
"[FUTURE_IMAGE]:", Image.open(future_keyframe_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_sound_director_prompt) ---\n{response.text}\n--------------------")
return response.text.strip()
except Exception as e:
logger.error(f"O Diretor de Som (Gemini) falhou: {e}. Usando fallback.")
return f"Sound effects matching the scene: {present_scene_desc}"
gemini_singleton = GeminiSingleton()