| import streamlit as st | |
| import pandas as pd | |
| import sklearn | |
| import pickle | |
| loaded_model = pickle.load(open("finalized_model.sav", 'rb')) | |
| def main(): | |
| st.image('img.jpg') | |
| st.title("βοΈπ© Engine prediction βοΈπ©") | |
| st.warning("Our Machine Learning algorithm predicts whether the elements of a machine work consistently\n\n") | |
| with st.form(key='columns_in_form'): | |
| c1, c2, c3 = st.columns(3) | |
| with c1: | |
| airTemperature = st.slider("Air temperature [K]", 0, 1500, 750) | |
| with c2: | |
| processTemperatire = st.slider( | |
| "Process temperature [K]", 0, 1500, 750) | |
| with c3: | |
| rotationSpeed = st.slider( | |
| "Rotational speed [rpm]", 0, 1500, 750) | |
| submitButton1 = st.form_submit_button(label='Save') | |
| with st.form(key='columns_in_form2'): | |
| c1, c2, c3, c4 = st.columns(4) | |
| with c1: | |
| toolWear = st.slider("Tool wear [min]", 0, 1500, 750) | |
| with c2: | |
| typeL = st.select_slider('Type_L', options=[0, 1]) | |
| with c3: | |
| typeM = st.select_slider('Type_M', options=[0, 1]) | |
| with c4: | |
| torqueNm = st.slider('Torque [Nm]', 0,300,150) | |
| submitButton2 = st.form_submit_button(label='Calculate') | |
| if (submitButton2): | |
| d = {'Air temperature [K]': airTemperature, 'Process temperature [K]': processTemperatire, | |
| 'Rotational speed [rpm]': rotationSpeed, "Torque [Nm]": torqueNm, "Tool wear [min]": toolWear, "Type_L": typeL, "Type_M": typeM} | |
| ser = pd.Series(data=d, index=['Air temperature [K]', 'Process temperature [K]', | |
| 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Type_L', 'Type_M']) | |
| res = loaded_model.predict([ser]) | |
| if (res[0] == 0): | |
| st.success("The machine is in good condition") | |
| else: | |
| st.error("The machine seems to have problems") | |
| if __name__ == '__main__': | |
| main() | |