U1020040 commited on
Commit
4cffc64
·
1 Parent(s): e7a64f4

header update

Browse files
Files changed (3) hide show
  1. HEADER.md +27 -0
  2. app.py +15 -14
  3. logo.svg +0 -232
HEADER.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIPHEI-ViT Demo: 16-channel mIF Prediction
2
+
3
+ <p align="center">
4
+ <a href="https://huggingface.co/Estabousi/MIPHEI-vit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
5
+ <img src="https://img.shields.io/badge/🤗 Model-MIPHEI--ViT-lightgrey?logo=huggingface" height="25">
6
+ </a>
7
+ <a href="https://github.com/Sanofi-Public/MIPHEI-ViT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
8
+ <img src="https://img.shields.io/badge/GitHub-Repository-black?logo=github" height="25">
9
+ </a>
10
+ </p>
11
+
12
+ **MIPHEI-ViT** predicts **multiplex immunofluorescence (mIF)** from standard **H&E-stained** histology tiles.
13
+
14
+ Upload a colorectal H&E tile (256×256 px at 0.5 µm/px recommended). Images will be resized if needed — this may affect resolution and output quality.
15
+
16
+ The model returns **16 grayscale images**, each representing a predicted mIF marker. Inference is slow because the Space is using CPU.
17
+
18
+ ---
19
+
20
+ Try it with low-zoom screenshots from public datasets:
21
+
22
+ **ORION (in-domain test set):**
23
+ - [CRC2](https://labsyspharm.github.io/orion-crc/minerva/P37_S30-CRC02/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=1.0673_0.6057_0.5&o=-100_-100_1_1&p=Q)
24
+ - [CRC11](https://labsyspharm.github.io/orion-crc/minerva/P37_S43-CRC11/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=0.4823_0.6723_0.5097&o=-100_-100_1_1&p=Q)
25
+
26
+ **TCGA (external):**
27
+ - [GDC Slide Viewer](https://portal.gdc.cancer.gov/image-viewer/MultipleImageViewerPage?isCohortCentric=true&additionalFilters=%7B%22mode%22%3A%22and%22%2C%22root%22%3A%7B%22files.data_type%22%3A%7B%22operator%22%3A%22includes%22%2C%22field%22%3A%22files.data_type%22%2C%22operands%22%3A%5B%22Slide%20Image%22%5D%7D%2C%22cases.samples.preservation_method%22%3A%7B%22operator%22%3A%22includes%22%2C%22field%22%3A%22cases.samples.preservation_method%22%2C%22operands%22%3A%5B%22ffpe%22%5D%7D%2C%22files.access%22%3A%7B%22operator%22%3A%22includes%22%2C%22field%22%3A%22files.access%22%2C%22operands%22%3A%5B%22open%22%5D%7D%7D%7D) (Filter Cases: TCGA*)
app.py CHANGED
@@ -38,22 +38,23 @@ def predict(image):
38
  pil_ch = Image.fromarray(ch_img, mode='L')
39
  channel_imgs.append(pil_ch)
40
 
41
- # Return list: input + 16 channels
42
  return channel_imgs
43
 
44
- # Prepare Gradio UI
45
- demo = gr.Interface(
46
- fn=predict,
47
- inputs=gr.Image(type="pil", label="Input H&E"),
48
- outputs=[gr.Image(type="pil", label=f"mIF Channel {channel_names[i]}") for i in range(16)],
49
- title="MIPHEI-ViT: Full mIF Prediction",
50
- description=(
51
- "Upload an H&E image tile (colorectal 256×256 pxs at 0.5 µm/px recommended). "
52
- "The image will be resized to (256×256) if needed.\n"
53
- "The model predicts 16-channel multiplex immunofluorescence, "
54
- "with each marker shown as a grayscale image."
55
- )
56
- )
 
57
 
58
  if __name__ == "__main__":
59
  demo.launch()
 
38
  pil_ch = Image.fromarray(ch_img, mode='L')
39
  channel_imgs.append(pil_ch)
40
 
41
+ # Return predicted 16 channels
42
  return channel_imgs
43
 
44
+ # Markdown header
45
+ with open("HEADER.md", "r", encoding="utf-8") as f:
46
+ HEADER_MD = f.read()
47
+
48
+ # Build interface using Blocks
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown(HEADER_MD)
51
+ gr.Interface(
52
+ fn=predict,
53
+ inputs=gr.Image(type="pil", label="Input H&E"),
54
+ outputs=[gr.Image(type="pil", label=f"mIF Channel {channel_names[i]}") for i in range(16)],
55
+ title=None,
56
+ description=None
57
+ )
58
 
59
  if __name__ == "__main__":
60
  demo.launch()
logo.svg DELETED