Spaces:
Paused
Paused
File size: 8,768 Bytes
015dd20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import os
import sys
import shutil
import subprocess
import textwrap
from pathlib import Path
from typing import Optional, List, Dict
from huggingface_hub import snapshot_download
APP_HOME = Path(os.environ.get("APP_HOME", "/app"))
SEED_REPO_DIR = APP_HOME / "SeedVR" # ajuste se o repo clonado estiver em outro path
CONFIGS_DIR = APP_HOME / "configs_3b"
CKPT_DIR = APP_HOME / "ckpt" / "SeedVR2-3B"
MODELS_DIR = Path(os.environ.get("MODELS_DIR", "/app/models"))
REPO_ID = os.environ.get("REPO_ID_SEED", "ByteDance-Seed/SeedVR2-3B")
# Arquivos essenciais (conforme app-13 e seedvr-1.sh)
REQUIRED_FILES = [
"seedvr2_ema_3b.pth", # modelo principal
"ema_vae.pth", # VAE
"pos_emb.pt", # embeddings positivos
"neg_emb.pt", # embeddings negativos
]
def _env_bool(name: str, default: bool = True) -> bool:
v = os.environ.get(name)
return default if v is None else v.strip().lower() in ("1", "true", "yes", "on")
class SeedVRRefineService:
def __init__(self) -> None:
self.app_home = APP_HOME
self.repo_dir = SEED_REPO_DIR
self.configs = CONFIGS_DIR
self.ckpt_dir = CKPT_DIR
# ---------------- Apex shim (sem Apex real) ----------------
def ensure_apex(self, enable_shim: bool = True) -> None:
if not enable_shim:
return
shims_dir = Path("/app/shims/apex")
shims_dir.mkdir(parents=True, exist_ok=True)
norm_py = shims_dir / "normalization.py"
code = textwrap.dedent("""
import torch
import torch.nn as nn
class FusedRMSNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):
super().__init__()
try:
self.norm = nn.RMSNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
except AttributeError:
self.norm = _RMSNormFallback(normalized_shape, eps, elementwise_affine)
def forward(self, x):
return self.norm(x)
class FusedLayerNorm(nn.LayerNorm):
pass
class _RMSNormFallback(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):
super().__init__()
if isinstance(normalized_shape, int):
normalized_shape = (normalized_shape,)
self.normalized_shape = tuple(normalized_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(self.normalized_shape))
else:
self.register_parameter("weight", None)
def forward(self, x):
dim = tuple(range(-len(self.normalized_shape), 0))
variance = x.pow(2).mean(dim=dim, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
if self.weight is not None:
x = x * self.weight
return x
""")
norm_py.write_text(code)
shims_root = str(Path("/app/shims"))
if shims_root not in sys.path:
sys.path.insert(0, shims_root)
os.environ["PYTHONPATH"] = shims_root + (":" + os.environ["PYTHONPATH"] if "PYTHONPATH" in os.environ else "")
def _preflight_imports(self) -> None:
try:
import importlib
importlib.import_module("apex.normalization")
print("apex shim OK (apex.normalization resolvido)")
except Exception as e:
raise RuntimeError(f"apex shim não resolvido: {e}")
# ---------------- Modelos ----------------
def ensure_model(self, max_workers: int = 48, token: Optional[str] = None) -> str:
self.ckpt_dir.mkdir(parents=True, exist_ok=True)
# já baixados?
have = all((self.ckpt_dir / f).exists() for f in REQUIRED_FILES)
if not have:
allow = [
"seedvr2_ema_3b.pth",
"ema_vae.pth",
"pos_emb.pt",
"neg_emb.pt",
"*.md", "*.txt"
]
if token:
try:
from huggingface_hub import login
login(token=token)
except Exception:
pass
snapshot_download(
repo_id=REPO_ID,
local_dir=str(self.ckpt_dir),
local_dir_use_symlinks=False,
resume_download=True,
max_workers=max_workers,
allow_patterns=allow
)
return f"SeedVR ckpts prontos em {self.ckpt_dir}"
# ---------------- Ambiente GPU ----------------
def _gpu_env(self) -> Dict[str, str]:
env = os.environ.copy()
env.setdefault("CUDA_VISIBLE_DEVICES", os.environ.get("CUDA_VISIBLE_DEVICES", "0,1,2,3,4,5,6,7"))
env.setdefault("CUDA_DEVICE_MAX_CONNECTIONS", "32")
env.setdefault("CUDA_DEVICE_ORDER", "PCI_BUS_ID")
env.setdefault("CUDA_MODULE_LOADING", "LAZY")
env.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:512,garbage_collection_threshold:0.8")
# NCCL
env.setdefault("NCCL_DEBUG", "INFO")
env.setdefault("NCCL_ASYNC_ERROR_HANDLING", "1")
env.setdefault("NCCL_P2P_DISABLE", "0")
env.setdefault("NCCL_IB_DISABLE", "1") # ajuste p/ sua topologia
env.setdefault("NCCL_MIN_NCHANNELS", "8")
env.setdefault("NCCL_NTHREADS", "256")
# SDPA/FA
env.setdefault("ENABLE_FLASH_SDP", "1")
env.setdefault("ENABLE_MEMORY_EFFICIENT_SDP", "1")
env.setdefault("ENABLE_MATH_SDP", "0")
env.setdefault("FLASH_ATTENTION_DISABLE", "0")
env.setdefault("XFORMERS_FORCE_DISABLE", "1")
env.setdefault("TORCH_DTYPE", os.environ.get("TORCH_DTYPE", "bfloat16"))
# PYTHONPATH com shim
shims_root = "/app/shims"
env["PYTHONPATH"] = shims_root + (":" + env["PYTHONPATH"] if "PYTHONPATH" in env else "")
return env
# ---------------- Execução de refine ----------------
def _find_refine_script(self) -> Path:
# Baseado no app-13, o runner é VideoDiffusionInfer, porém aqui criamos um entrypoint "refine_cli.py"
# Caso o repositório traga um script específico de sr/refine, ajuste a lista abaixo:
candidates = [
self.repo_dir / "projects" / "video_diffusion_sr" / "refine_cli.py",
self.repo_dir / "inference_refine.py",
self.repo_dir / "inference.py",
]
for p in candidates:
if p.exists():
return p
raise FileNotFoundError("Script de refine do SeedVR não encontrado (ajuste _find_refine_script).")
def refine(
self,
input_path: Path,
output_dir: Optional[Path] = None,
upscale: float = 1.0,
strength: float = 0.35,
denoise: float = 0.1,
t_consistency: float = 0.7,
fps_out: Optional[int] = None,
tile: Optional[int] = None,
dtype: Optional[str] = None,
extra: Optional[List[str]] = None
) -> str:
input_path = Path(input_path)
if not input_path.exists():
raise FileNotFoundError(f"Entrada não encontrada: {input_path}")
if dtype:
os.environ["TORCH_DTYPE"] = dtype
out = output_dir or (self.app_home / "outputs" / "seedvr_refine")
out.mkdir(parents=True, exist_ok=True)
script = self._find_refine_script()
cmd = [sys.executable, str(script),
"--mode", "refine",
"--ckpt_dir", str(self.ckpt_dir),
"--input", str(input_path),
"--output_dir", str(out),
"--strength", str(strength),
"--t_consistency", str(t_consistency),
"--denoise", str(denoise),
"--upscale", str(upscale)]
if fps_out is not None:
cmd += ["--fps", str(fps_out)]
if tile:
cmd += ["--tile", str(tile)]
if extra:
cmd += extra
# Pré-checagem do shim
self.ensure_apex(enable_shim=True)
self._preflight_imports()
env = self._gpu_env()
print("CMD:", " ".join(map(str, cmd)))
print("PYTHONPATH:", env.get("PYTHONPATH"))
subprocess.check_call(cmd, env=env, cwd=str(self.app_home))
return str(out)
|