Aduc-sdr-2_5s / aduc_framework /tools /pipeline_patches.py
x2XcarleX2x's picture
Update aduc_framework/tools/pipeline_patches.py
7522163 verified
# aduc_framework/tools/pipeline_patches.py (Central de Modificações ADUC)
import torch
import logging
from typing import List, Optional, Union
# --- Importa os tipos da nossa arquitetura ---
from ..types import LatentConditioningItem
# --- Importa as classes originais que vamos modificar ---
# Usamos try-except para permitir que o linter analise o arquivo mesmo sem as dependências.
try:
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from ..managers.pipeline_wan_i2v import WanImageToVideoPipeline
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem
from ltx_video.models.autoencoders.vae_encode import latent_to_pixel_coords
from diffusers.utils.torch_utils import randn_tensor
except ImportError:
WanImageToVideoPipeline = None
LTXVideoPipeline = None
ConditioningItem = None
latent_to_pixel_coords = None
randn_tensor = None
logger = logging.getLogger(__name__)
# ==============================================================================
# PATCH #1: Pipeline WanImageToVideo (Wan2.2)
# Objetivo: Ensinar a pipeline a usar `LatentConditioningItem` para controle ADUC.
# ==============================================================================
def prepare_latents_patch_for_wan_i2v(
self: WanImageToVideoPipeline,
conditioning_items: List[LatentConditioningItem],
batch_size: int,
num_channels_latents: int,
height: int,
width: int,
num_frames: int,
dtype: torch.dtype,
device: torch.device,
generator,
latents: Optional[torch.Tensor] = None,
**kwargs # Aceita e ignora outros argumentos como 'image', 'last_image'
) -> tuple[torch.Tensor, torch.Tensor]:
"""Monkey patch para a pipeline WanImageToVideo, permitindo o uso de LatentConditioningItem."""
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latent_height = height // self.vae_scale_factor_spatial
latent_width = width // self.vae_scale_factor_spatial
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
init_latents = latents if latents is not None else torch.randn(shape, generator=generator, device=device, dtype=dtype)
init_latents = init_latents.to(device=device, dtype=dtype)
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width, device=device, dtype=dtype)
mask_lat_size[:, :, 1:] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:]], dim=2)
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
mask_lat_size = mask_lat_size.transpose(1, 2).to(init_latents.device)
logger.info(f"WAN_PATCH: Aplicando {len(conditioning_items)} itens de condicionamento.")
for item in conditioning_items:
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
frame_idx, strength = item.media_frame_number, item.conditioning_strength
if frame_idx >= num_latent_frames:
logger.warning(f"WAN_PATCH: frame_idx {frame_idx} fora dos limites. Pulando.")
continue
f_l, h_l, w_l = media_item_latents.shape[-3:]
init_latents[:, :, frame_idx:frame_idx+f_l, :h_l, :w_l] = torch.lerp(
init_latents[:, :, frame_idx:frame_idx+f_l, :h_l, :w_l], media_item_latents, strength
)
mask_lat_size[:, :, frame_idx, :h_l, :w_l] = strength
condition = torch.concat([mask_lat_size, init_latents], dim=1)
return init_latents, condition
# ==============================================================================
# PATCH #2: Pipeline LTXVideo (LTX)
# Objetivo: Ensinar a pipeline a usar `LatentConditioningItem` para controle ADUC.
# ==============================================================================
def prepare_conditioning_patch_for_ltx(
self: "LTXVideoPipeline",
conditioning_items: Optional[List[Union["ConditioningItem", "LatentConditioningItem"]]],
init_latents: torch.Tensor,
num_frames: int,
height: int,
width: int,
vae_per_channel_normalize: bool = False,
generator=None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
"""Monkey patch para a pipeline LTX-Video, focando no uso de LatentConditioningItem."""
if not conditioning_items:
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
return init_latents, init_pixel_coords, None, 0
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
extra_conditioning_num_latents = 0
logger.info(f"LTX_PATCH: Aplicando {len(conditioning_items)} itens de condicionamento.")
for item in conditioning_items:
if not isinstance(item, LatentConditioningItem):
logger.warning("LTX_PATCH: Item de condicionamento não é um LatentConditioningItem e será ignorado.")
continue
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
media_frame_number, strength = item.media_frame_number, item.conditioning_strength
if media_frame_number == 0:
f_l, h_l, w_l = media_item_latents.shape[-3:]
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
else:
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
media_item_latents = torch.lerp(noise, media_item_latents, strength)
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
pixel_coords[:, 0] += media_frame_number
extra_conditioning_num_latents += patched_latents.shape[1]
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents.append(patched_latents)
extra_conditioning_pixel_coords.append(pixel_coords)
extra_conditioning_mask.append(new_mask)
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
if extra_conditioning_latents:
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
# ==============================================================================
# FUNÇÃO DE APLICAÇÃO CENTRAL
# ==============================================================================
def apply_aduc_patches():
"""Função central para aplicar todos os nossos patches ADUC-SDR."""
logger.info("--- Central de Patches ADUC-SDR: Aplicando modificações ---")
# Aplica o patch na pipeline do Wan2.2
#if WanImageToVideoPipeline:
# logger.info("-> Modificando 'WanImageToVideoPipeline.prepare_latents'...")
# WanImageToVideoPipeline.prepare_latents = prepare_latents_patch_for_wan_i2v
#else:
# logger.warning("-> WanImageToVideoPipeline não encontrada. Patch pulado.")
# Aplica o patch na pipeline do LTX
if LTXVideoPipeline:
logger.info("-> Modificando 'LTXVideoPipeline.prepare_conditioning'...")
LTXVideoPipeline.prepare_conditioning = prepare_conditioning_patch_for_ltx
else:
logger.warning("-> LTXVideoPipeline não encontrada. Patch pulado.")
logger.info("--- Modificações de pipeline concluídas ---")