Spaces:
Paused
Paused
Update app_ltx.py
Browse files- app_ltx.py +72 -133
app_ltx.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
import os
|
|
@@ -14,42 +14,27 @@ import shutil
|
|
| 14 |
import sys
|
| 15 |
|
| 16 |
# --- SETUP INICIAL: GARANTIR QUE A BIBLIOTECA LTX-VIDEO ESTEJA ACESSÍVEL ---
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
LTX_REPO_PATH
|
| 20 |
-
if not LTX_REPO_PATH.exists():
|
| 21 |
-
# Fallback se o Dockerfile não clonou, tenta clonar agora.
|
| 22 |
-
print(f"Diretório {LTX_REPO_PATH} não encontrado. Tentando clonar...")
|
| 23 |
-
try:
|
| 24 |
-
subprocess.run(["git", "clone", "--depth", "1", "https://github.com/Lightricks/LTX-Video", str(LTX_REPO_PATH)], check=True)
|
| 25 |
-
except Exception as e:
|
| 26 |
-
print(f"ERRO FATAL: Falha ao clonar o repositório LTX-Video. {e}")
|
| 27 |
-
raise
|
| 28 |
-
|
| 29 |
-
if str(LTX_REPO_PATH) not in sys.path:
|
| 30 |
-
# Adiciona o diretório clonado ao sys.path para permitir os imports
|
| 31 |
sys.path.insert(0, str(LTX_REPO_PATH))
|
| 32 |
print(f"Adicionado '{LTX_REPO_PATH}' ao sys.path.")
|
| 33 |
|
| 34 |
-
#
|
|
|
|
| 35 |
try:
|
| 36 |
-
from ltx_video.
|
| 37 |
-
|
| 38 |
-
create_latent_upsampler,
|
| 39 |
-
seed_everething,
|
| 40 |
-
calculate_padding,
|
| 41 |
-
)
|
| 42 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 43 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 44 |
-
from diffusers.utils import export_to_video, load_image
|
| 45 |
-
from ltx_video.
|
| 46 |
except ImportError as e:
|
| 47 |
-
print(f"ERRO FATAL: Falha ao importar módulos do LTX-Video. Verifique a instalação
|
| 48 |
raise
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
# --- CARREGAMENTO GLOBAL DOS MODELOS E CONFIGURAÇÕES ---
|
| 52 |
-
|
| 53 |
APP_HOME = Path(os.environ.get("APP_HOME", "/app"))
|
| 54 |
CONFIG_FILE_PATH = APP_HOME / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 55 |
MODELS_DIR = Path("/data/ltx_models_official")
|
|
@@ -62,153 +47,107 @@ with open(CONFIG_FILE_PATH, "r") as file:
|
|
| 62 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 63 |
DTYPE = torch.bfloat16 if DEVICE == "cuda" and torch.cuda.is_bf16_supported() else torch.float16
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# 1. Baixa os arquivos de pesos principais
|
| 68 |
for key in ["checkpoint_path", "spatial_upscaler_model_path"]:
|
| 69 |
filename = PIPELINE_CONFIG_YAML.get(key)
|
| 70 |
if filename and not (MODELS_DIR / filename).exists():
|
| 71 |
-
print(f"Baixando {filename}...")
|
| 72 |
hf_hub_download(repo_id="Lightricks/LTX-Video", filename=filename, local_dir=str(MODELS_DIR), token=os.getenv("HF_TOKEN"))
|
| 73 |
-
#
|
| 74 |
-
snapshot_download(repo_id="
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
)
|
| 95 |
-
|
| 96 |
-
print(f"Movendo pipelines para o dispositivo: {DEVICE}...")
|
| 97 |
-
pipeline_instance.to(DEVICE)
|
| 98 |
-
latent_upsampler_instance.to(DEVICE)
|
| 99 |
pipeline_instance.vae.enable_tiling()
|
| 100 |
-
print("✅ Pipelines
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL (CALLBACK DO GRADIO) ---
|
| 104 |
-
|
| 105 |
-
def round_to_nearest_resolution(height, width):
|
| 106 |
-
ratio = pipeline_instance.vae.spatial_compression_ratio
|
| 107 |
-
height = height - (height % ratio)
|
| 108 |
-
width = width - (width % ratio)
|
| 109 |
-
return int(height), int(width)
|
| 110 |
|
| 111 |
|
|
|
|
|
|
|
| 112 |
def generate(
|
| 113 |
-
prompt: str,
|
| 114 |
-
|
| 115 |
-
target_height: int,
|
| 116 |
-
target_width: int,
|
| 117 |
-
num_frames: int,
|
| 118 |
-
seed: int,
|
| 119 |
-
guidance_scale: float,
|
| 120 |
-
num_inference_steps: int,
|
| 121 |
-
denoise_strength: float,
|
| 122 |
progress=gr.Progress(track_tqdm=True)
|
| 123 |
):
|
| 124 |
-
if not image_input and not prompt:
|
| 125 |
-
raise gr.Error("Por favor, forneça uma imagem de entrada ou um prompt de texto.")
|
| 126 |
-
|
| 127 |
seed_everething(seed)
|
| 128 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 129 |
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
if image_input:
|
| 132 |
progress(0.1, desc="Preparando imagem de condição...")
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
| 137 |
|
| 138 |
-
# --- LÓGICA MULTI-ESCALA ---
|
| 139 |
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
|
| 140 |
-
|
| 141 |
-
# Prepara os argumentos com base no YAML e na UI
|
| 142 |
-
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
| 143 |
-
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
| 144 |
-
|
| 145 |
-
# Sobrescreve com os valores da UI onde faz sentido
|
| 146 |
-
# Se o YAML tiver uma lista para guidance_scale, respeitamos isso. Se não, usamos o valor da UI.
|
| 147 |
-
if not isinstance(first_pass_args.get("guidance_scale"), list):
|
| 148 |
-
first_pass_args["guidance_scale"] = guidance_scale
|
| 149 |
-
if not isinstance(second_pass_args.get("guidance_scale"), list):
|
| 150 |
-
second_pass_args["guidance_scale"] = guidance_scale
|
| 151 |
-
|
| 152 |
-
first_pass_args["num_inference_steps"] = num_inference_steps
|
| 153 |
-
second_pass_args["denoise_strength"] = denoise_strength
|
| 154 |
|
| 155 |
call_kwargs = {
|
| 156 |
-
"prompt": prompt,
|
| 157 |
-
"negative_prompt": "worst quality, inconsistent motion, blurry, jittery, distorted",
|
| 158 |
"height": target_height, "width": target_width, "num_frames": num_frames,
|
| 159 |
"generator": generator, "output_type": "pt",
|
| 160 |
-
"conditioning_items":
|
| 161 |
-
|
| 162 |
-
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
|
| 163 |
-
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
|
| 164 |
-
"first_pass": first_pass_args,
|
| 165 |
-
"second_pass": second_pass_args,
|
| 166 |
}
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
progress(0.3, desc="Gerando vídeo (pode levar alguns minutos)...")
|
| 170 |
result_tensor = multi_scale_pipeline(**call_kwargs).images
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
output_video_path = tempfile.mktemp(suffix=".mp4")
|
| 175 |
video_np = result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
| 176 |
video_np = np.clip(video_np * 255, 0, 255).astype("uint8")
|
| 177 |
export_to_video(video_np, str(output_video_path), fps=24)
|
| 178 |
|
| 179 |
-
print(f"Vídeo gerado com sucesso em: {output_video_path}")
|
| 180 |
return output_video_path
|
| 181 |
|
| 182 |
# --- UI GRADIO ---
|
| 183 |
-
with gr.Blocks(title="LTX-Video (
|
| 184 |
-
gr.HTML("<h1>LTX-Video - Geração de Vídeo Multi-Scale (FP8)</h1
|
| 185 |
-
|
| 186 |
with gr.Row():
|
| 187 |
with gr.Column(scale=1):
|
| 188 |
-
image_in = gr.Image(type="filepath", label="Imagem de Entrada (Opcional
|
| 189 |
-
prompt_in = gr.Textbox(label="Prompt", lines=4, placeholder="Ex: a cinematic shot
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
with gr.Row():
|
| 196 |
-
frames_in = gr.Slider(label="Número de Frames", minimum=17, maximum=161, step=8, value=97, info="Deve ser um múltiplo de 8 + 1.")
|
| 197 |
-
seed_in = gr.Number(label="Seed", value=42, precision=0)
|
| 198 |
-
|
| 199 |
-
with gr.Accordion("Parâmetros Avançados", open=False):
|
| 200 |
-
num_inference_steps_in = gr.Slider(label="Passos de Inferência (Etapa 1)", minimum=4, maximum=50, step=1, value=30)
|
| 201 |
-
guidance_scale_in = gr.Slider(label="Força do Guia (Guidance)", minimum=1.0, maximum=10.0, step=0.5, value=1.0, info="Para modelos 'distilled', o valor recomendado é 1.0.")
|
| 202 |
-
denoise_strength_in = gr.Slider(label="Força do Refinamento (Denoise)", minimum=0.1, maximum=1.0, step=0.05, value=0.5, info="Controla a intensidade da Etapa 3 (refinamento).")
|
| 203 |
-
|
| 204 |
run_button = gr.Button("Gerar Vídeo", variant="primary")
|
| 205 |
-
|
| 206 |
with gr.Column(scale=1):
|
| 207 |
video_out = gr.Video(label="Vídeo Gerado")
|
| 208 |
|
| 209 |
run_button.click(
|
| 210 |
fn=generate,
|
| 211 |
-
inputs=[prompt_in, image_in, height_in, width_in, frames_in, seed_in
|
| 212 |
outputs=[video_out],
|
| 213 |
)
|
| 214 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import spaces
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
import os
|
|
|
|
| 14 |
import sys
|
| 15 |
|
| 16 |
# --- SETUP INICIAL: GARANTIR QUE A BIBLIOTECA LTX-VIDEO ESTEJA ACESSÍVEL ---
|
| 17 |
+
# O Dockerfile deve ter clonado e instalado o repositório em /opt/LTX-Video
|
| 18 |
+
LTX_REPO_PATH = Path("/opt/LTX-Video")
|
| 19 |
+
if LTX_REPO_PATH.exists() and str(LTX_REPO_PATH) not in sys.path:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
sys.path.insert(0, str(LTX_REPO_PATH))
|
| 21 |
print(f"Adicionado '{LTX_REPO_PATH}' ao sys.path.")
|
| 22 |
|
| 23 |
+
# ====================================================================
|
| 24 |
+
# <<< IMPORTAÇÕES CORRIGIDAS, EXATAMENTE COMO VOCÊ PEDIU >>>
|
| 25 |
try:
|
| 26 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem, LTXMultiScalePipeline
|
| 27 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 29 |
+
from diffusers.utils import export_to_video, load_image
|
| 30 |
+
from ltx_video.inference import seed_everething, calculate_padding, load_media_file
|
| 31 |
except ImportError as e:
|
| 32 |
+
print(f"ERRO FATAL: Falha ao importar módulos do LTX-Video. Verifique a instalação. Erro: {e}")
|
| 33 |
raise
|
| 34 |
+
# ====================================================================
|
| 35 |
|
| 36 |
|
| 37 |
# --- CARREGAMENTO GLOBAL DOS MODELOS E CONFIGURAÇÕES ---
|
|
|
|
| 38 |
APP_HOME = Path(os.environ.get("APP_HOME", "/app"))
|
| 39 |
CONFIG_FILE_PATH = APP_HOME / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 40 |
MODELS_DIR = Path("/data/ltx_models_official")
|
|
|
|
| 47 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
DTYPE = torch.bfloat16 if DEVICE == "cuda" and torch.cuda.is_bf16_supported() else torch.float16
|
| 49 |
|
| 50 |
+
print(f"Verificando e baixando modelos para '{MODELS_DIR}'...")
|
| 51 |
+
# Baixa os arquivos de pesos principais
|
|
|
|
| 52 |
for key in ["checkpoint_path", "spatial_upscaler_model_path"]:
|
| 53 |
filename = PIPELINE_CONFIG_YAML.get(key)
|
| 54 |
if filename and not (MODELS_DIR / filename).exists():
|
|
|
|
| 55 |
hf_hub_download(repo_id="Lightricks/LTX-Video", filename=filename, local_dir=str(MODELS_DIR), token=os.getenv("HF_TOKEN"))
|
| 56 |
+
# Baixa os componentes de apoio
|
| 57 |
+
snapshot_download(repo_id=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], local_dir=str(MODELS_DIR / "text_encoder"), token=os.getenv("HF_TOKEN"))
|
| 58 |
+
print("Modelos verificados/baixados.")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
print("Montando pipelines LTX-Video...")
|
| 62 |
+
# Carrega os componentes individualmente para montar a pipeline
|
| 63 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 64 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 65 |
+
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 66 |
+
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 67 |
+
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 68 |
+
|
| 69 |
+
transformer = Transformer3DModel.from_pretrained(str(MODELS_DIR / PIPELINE_CONFIG_YAML["checkpoint_path"])).to(DEVICE, dtype=DTYPE)
|
| 70 |
+
vae = CausalVideoAutoencoder.from_pretrained(str(MODELS_DIR / "vae")).to(DEVICE, dtype=DTYPE)
|
| 71 |
+
text_encoder = T5EncoderModel.from_pretrained(str(MODELS_DIR / "text_encoder")).to(DEVICE, dtype=DTYPE)
|
| 72 |
+
tokenizer = T5Tokenizer.from_pretrained(str(MODELS_DIR / "text_encoder"))
|
| 73 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(str(MODELS_DIR / "scheduler"))
|
| 74 |
+
|
| 75 |
+
pipeline_instance = LTXVideoPipeline(
|
| 76 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, patchifier=SymmetricPatchifier(patch_size=1)
|
| 77 |
)
|
| 78 |
+
latent_upsampler_instance = LatentUpsampler.from_pretrained(str(MODELS_DIR / PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"])).to(DEVICE, dtype=DTYPE)
|
|
|
|
|
|
|
|
|
|
| 79 |
pipeline_instance.vae.enable_tiling()
|
| 80 |
+
print("✅ Pipelines prontas na GPU.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
+
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL ---
|
| 84 |
+
@spaces.GPU
|
| 85 |
def generate(
|
| 86 |
+
prompt: str, image_input: Optional[str],
|
| 87 |
+
target_height: int, target_width: int, num_frames: int, seed: int,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
progress=gr.Progress(track_tqdm=True)
|
| 89 |
):
|
|
|
|
|
|
|
|
|
|
| 90 |
seed_everething(seed)
|
| 91 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 92 |
|
| 93 |
+
height_padded = ((target_height - 1) // 32 + 1) * 32
|
| 94 |
+
width_padded = ((target_width - 1) // 32 + 1) * 32
|
| 95 |
+
padding_values = calculate_padding(target_height, target_width, height_padded, width_padded)
|
| 96 |
+
|
| 97 |
+
conditioning_items = None
|
| 98 |
if image_input:
|
| 99 |
progress(0.1, desc="Preparando imagem de condição...")
|
| 100 |
+
media_tensor = load_media_file(
|
| 101 |
+
media_path=image_input, height=target_height, width=target_width,
|
| 102 |
+
max_frames=1, padding=padding_values, just_crop=True
|
| 103 |
+
)
|
| 104 |
+
conditioning_items = [ConditioningItem(media_tensor.to(DEVICE, dtype=DTYPE), 0, 1.0)]
|
| 105 |
|
|
|
|
| 106 |
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
call_kwargs = {
|
| 109 |
+
"prompt": prompt, "negative_prompt": "worst quality...",
|
|
|
|
| 110 |
"height": target_height, "width": target_width, "num_frames": num_frames,
|
| 111 |
"generator": generator, "output_type": "pt",
|
| 112 |
+
"conditioning_items": conditioning_items,
|
| 113 |
+
**PIPELINE_CONFIG_YAML
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
}
|
| 115 |
+
|
| 116 |
+
progress(0.3, desc="Gerando vídeo...")
|
|
|
|
| 117 |
result_tensor = multi_scale_pipeline(**call_kwargs).images
|
| 118 |
|
| 119 |
+
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 120 |
+
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 121 |
+
slice_w_end = -pad_right if pad_right > 0 else None
|
| 122 |
+
result_tensor = result_tensor[:, :, :num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 123 |
+
|
| 124 |
+
progress(0.9, desc="Exportando vídeo...")
|
| 125 |
output_video_path = tempfile.mktemp(suffix=".mp4")
|
| 126 |
video_np = result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
| 127 |
video_np = np.clip(video_np * 255, 0, 255).astype("uint8")
|
| 128 |
export_to_video(video_np, str(output_video_path), fps=24)
|
| 129 |
|
|
|
|
| 130 |
return output_video_path
|
| 131 |
|
| 132 |
# --- UI GRADIO ---
|
| 133 |
+
with gr.Blocks(title="LTX-Video (Final)", theme=gr.themes.Soft()) as demo:
|
| 134 |
+
gr.HTML("<h1>LTX-Video - Geração de Vídeo Multi-Scale (FP8)</h1>")
|
|
|
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column(scale=1):
|
| 137 |
+
image_in = gr.Image(type="filepath", label="Imagem de Entrada (Opcional)")
|
| 138 |
+
prompt_in = gr.Textbox(label="Prompt", lines=4, placeholder="Ex: a cinematic shot...")
|
| 139 |
+
with gr.Accordion("Parâmetros", open=True):
|
| 140 |
+
height_in = gr.Slider(label="Altura", minimum=256, maximum=1024, step=32, value=480)
|
| 141 |
+
width_in = gr.Slider(label="Largura", minimum=256, maximum=1280, step=32, value=832)
|
| 142 |
+
frames_in = gr.Slider(label="Frames", minimum=17, maximum=161, step=8, value=97)
|
| 143 |
+
seed_in = gr.Number(label="Seed", value=42, precision=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
run_button = gr.Button("Gerar Vídeo", variant="primary")
|
|
|
|
| 145 |
with gr.Column(scale=1):
|
| 146 |
video_out = gr.Video(label="Vídeo Gerado")
|
| 147 |
|
| 148 |
run_button.click(
|
| 149 |
fn=generate,
|
| 150 |
+
inputs=[prompt_in, image_in, height_in, width_in, frames_in, seed_in],
|
| 151 |
outputs=[video_out],
|
| 152 |
)
|
| 153 |
|