Spaces:
Paused
Paused
Create pipeline_patches.py
Browse files
aduc_framework/tools/pipeline_patches.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# aduc_framework/tools/pipeline_patches.py (Central de Modificações ADUC)
|
| 2 |
+
import torch
|
| 3 |
+
import logging
|
| 4 |
+
from typing import List, Optional, Union
|
| 5 |
+
|
| 6 |
+
# --- Importa os tipos da nossa arquitetura ---
|
| 7 |
+
from ..types import LatentConditioningItem
|
| 8 |
+
|
| 9 |
+
# --- Importa as classes originais que vamos modificar ---
|
| 10 |
+
# Usamos try-except para permitir que o linter analise o arquivo mesmo sem as dependências.
|
| 11 |
+
try:
|
| 12 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 13 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem
|
| 14 |
+
from ltx_video.models.autoencoders.vae_encode import latent_to_pixel_coords
|
| 15 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 16 |
+
except ImportError:
|
| 17 |
+
WanImageToVideoPipeline = None
|
| 18 |
+
LTXVideoPipeline = None
|
| 19 |
+
ConditioningItem = None
|
| 20 |
+
latent_to_pixel_coords = None
|
| 21 |
+
randn_tensor = None
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
# ==============================================================================
|
| 26 |
+
# PATCH #1: Pipeline WanImageToVideo (Wan2.2)
|
| 27 |
+
# Objetivo: Ensinar a pipeline a usar `LatentConditioningItem` para controle ADUC.
|
| 28 |
+
# ==============================================================================
|
| 29 |
+
def prepare_latents_patch_for_wan_i2v(
|
| 30 |
+
self: WanImageToVideoPipeline,
|
| 31 |
+
conditioning_items: List[LatentConditioningItem],
|
| 32 |
+
batch_size: int,
|
| 33 |
+
num_channels_latents: int,
|
| 34 |
+
height: int,
|
| 35 |
+
width: int,
|
| 36 |
+
num_frames: int,
|
| 37 |
+
dtype: torch.dtype,
|
| 38 |
+
device: torch.device,
|
| 39 |
+
generator,
|
| 40 |
+
latents: Optional[torch.Tensor] = None,
|
| 41 |
+
**kwargs # Aceita e ignora outros argumentos como 'image', 'last_image'
|
| 42 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 43 |
+
"""Monkey patch para a pipeline WanImageToVideo, permitindo o uso de LatentConditioningItem."""
|
| 44 |
+
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
| 45 |
+
latent_height = height // self.vae_scale_factor_spatial
|
| 46 |
+
latent_width = width // self.vae_scale_factor_spatial
|
| 47 |
+
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
|
| 48 |
+
|
| 49 |
+
init_latents = latents if latents is not None else torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 50 |
+
init_latents = init_latents.to(device=device, dtype=dtype)
|
| 51 |
+
|
| 52 |
+
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width, device=device, dtype=dtype)
|
| 53 |
+
mask_lat_size[:, :, 1:] = 0
|
| 54 |
+
|
| 55 |
+
first_frame_mask = mask_lat_size[:, :, 0:1]
|
| 56 |
+
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
|
| 57 |
+
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:]], dim=2)
|
| 58 |
+
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
|
| 59 |
+
mask_lat_size = mask_lat_size.transpose(1, 2).to(init_latents.device)
|
| 60 |
+
|
| 61 |
+
logger.info(f"WAN_PATCH: Aplicando {len(conditioning_items)} itens de condicionamento.")
|
| 62 |
+
for item in conditioning_items:
|
| 63 |
+
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 64 |
+
frame_idx, strength = item.media_frame_number, item.conditioning_strength
|
| 65 |
+
|
| 66 |
+
if frame_idx >= num_latent_frames:
|
| 67 |
+
logger.warning(f"WAN_PATCH: frame_idx {frame_idx} fora dos limites. Pulando.")
|
| 68 |
+
continue
|
| 69 |
+
|
| 70 |
+
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 71 |
+
init_latents[:, :, frame_idx:frame_idx+f_l, :h_l, :w_l] = torch.lerp(
|
| 72 |
+
init_latents[:, :, frame_idx:frame_idx+f_l, :h_l, :w_l], media_item_latents, strength
|
| 73 |
+
)
|
| 74 |
+
mask_lat_size[:, :, frame_idx, :h_l, :w_l] = strength
|
| 75 |
+
|
| 76 |
+
condition = torch.concat([mask_lat_size, init_latents], dim=1)
|
| 77 |
+
return init_latents, condition
|
| 78 |
+
|
| 79 |
+
# ==============================================================================
|
| 80 |
+
# PATCH #2: Pipeline LTXVideo (LTX)
|
| 81 |
+
# Objetivo: Ensinar a pipeline a usar `LatentConditioningItem` para controle ADUC.
|
| 82 |
+
# ==============================================================================
|
| 83 |
+
def prepare_conditioning_patch_for_ltx(
|
| 84 |
+
self: "LTXVideoPipeline",
|
| 85 |
+
conditioning_items: Optional[List[Union["ConditioningItem", "LatentConditioningItem"]]],
|
| 86 |
+
init_latents: torch.Tensor,
|
| 87 |
+
num_frames: int,
|
| 88 |
+
height: int,
|
| 89 |
+
width: int,
|
| 90 |
+
vae_per_channel_normalize: bool = False,
|
| 91 |
+
generator=None,
|
| 92 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 93 |
+
"""Monkey patch para a pipeline LTX-Video, focando no uso de LatentConditioningItem."""
|
| 94 |
+
if not conditioning_items:
|
| 95 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 96 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 97 |
+
return init_latents, init_pixel_coords, None, 0
|
| 98 |
+
|
| 99 |
+
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
|
| 100 |
+
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
|
| 101 |
+
extra_conditioning_num_latents = 0
|
| 102 |
+
|
| 103 |
+
logger.info(f"LTX_PATCH: Aplicando {len(conditioning_items)} itens de condicionamento.")
|
| 104 |
+
for item in conditioning_items:
|
| 105 |
+
if not isinstance(item, LatentConditioningItem):
|
| 106 |
+
logger.warning("LTX_PATCH: Item de condicionamento não é um LatentConditioningItem e será ignorado.")
|
| 107 |
+
continue
|
| 108 |
+
|
| 109 |
+
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 110 |
+
media_frame_number, strength = item.media_frame_number, item.conditioning_strength
|
| 111 |
+
|
| 112 |
+
if media_frame_number == 0:
|
| 113 |
+
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 114 |
+
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
|
| 115 |
+
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
|
| 116 |
+
else:
|
| 117 |
+
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
|
| 118 |
+
media_item_latents = torch.lerp(noise, media_item_latents, strength)
|
| 119 |
+
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
|
| 120 |
+
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 121 |
+
pixel_coords[:, 0] += media_frame_number
|
| 122 |
+
extra_conditioning_num_latents += patched_latents.shape[1]
|
| 123 |
+
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
|
| 124 |
+
extra_conditioning_latents.append(patched_latents)
|
| 125 |
+
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 126 |
+
extra_conditioning_mask.append(new_mask)
|
| 127 |
+
|
| 128 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 129 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 130 |
+
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
|
| 131 |
+
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 132 |
+
|
| 133 |
+
if extra_conditioning_latents:
|
| 134 |
+
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 135 |
+
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
|
| 136 |
+
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
|
| 137 |
+
|
| 138 |
+
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
|
| 139 |
+
|
| 140 |
+
# ==============================================================================
|
| 141 |
+
# FUNÇÃO DE APLICAÇÃO CENTRAL
|
| 142 |
+
# ==============================================================================
|
| 143 |
+
def apply_aduc_patches():
|
| 144 |
+
"""Função central para aplicar todos os nossos patches ADUC-SDR."""
|
| 145 |
+
logger.info("--- Central de Patches ADUC-SDR: Aplicando modificações ---")
|
| 146 |
+
|
| 147 |
+
# Aplica o patch na pipeline do Wan2.2
|
| 148 |
+
if WanImageToVideoPipeline:
|
| 149 |
+
logger.info("-> Modificando 'WanImageToVideoPipeline.prepare_latents'...")
|
| 150 |
+
WanImageToVideoPipeline.prepare_latents = prepare_latents_patch_for_wan_i2v
|
| 151 |
+
else:
|
| 152 |
+
logger.warning("-> WanImageToVideoPipeline não encontrada. Patch pulado.")
|
| 153 |
+
|
| 154 |
+
# Aplica o patch na pipeline do LTX
|
| 155 |
+
if LTXVideoPipeline:
|
| 156 |
+
logger.info("-> Modificando 'LTXVideoPipeline.prepare_conditioning'...")
|
| 157 |
+
LTXVideoPipeline.prepare_conditioning = prepare_conditioning_patch_for_ltx
|
| 158 |
+
else:
|
| 159 |
+
logger.warning("-> LTXVideoPipeline não encontrada. Patch pulado.")
|
| 160 |
+
|
| 161 |
+
logger.info("--- Modificações de pipeline concluídas ---")
|