Spaces:
Paused
Paused
Update video_service.py
Browse files- video_service.py +110 -133
video_service.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
# video_service.py
|
| 3 |
|
| 4 |
import torch
|
|
@@ -30,7 +29,7 @@ def run_setup():
|
|
| 30 |
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
|
| 31 |
sys.exit(1)
|
| 32 |
|
| 33 |
-
DEPS_DIR = Path("
|
| 34 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 35 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 36 |
run_setup()
|
|
@@ -41,7 +40,7 @@ def add_deps_to_path():
|
|
| 41 |
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 42 |
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
# Importações específicas do modelo
|
| 47 |
from inference import (
|
|
@@ -123,163 +122,141 @@ class VideoService:
|
|
| 123 |
return worker
|
| 124 |
time.sleep(0.1)
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
|
|
|
| 128 |
improve_texture=True, progress_callback=None):
|
| 129 |
|
|
|
|
| 130 |
self._ensure_models_are_loaded()
|
|
|
|
| 131 |
worker = self._acquire_worker()
|
| 132 |
base_device = worker['devices']['base']
|
| 133 |
upscaler_device = worker['devices']['upscaler']
|
| 134 |
|
| 135 |
try:
|
| 136 |
-
#
|
| 137 |
-
if mode == "image-to-video" and not input_image_filepath:
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
raise ValueError("Caminho do vídeo obrigatório para o modo video-to-video")
|
| 141 |
-
|
| 142 |
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
|
| 143 |
seed_everething(used_seed)
|
| 144 |
-
|
| 145 |
-
FPS =
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
target_frames_rounded = round(target_frames_ideal)
|
| 149 |
-
if target_frames_rounded < 1: target_frames_rounded = 1
|
| 150 |
-
n_val = round(float(target_frames_rounded - 1.0) / 8.0)
|
| 151 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
width_padded = (actual_width - 1) // 32 * 32 + 32
|
| 157 |
-
num_frames_padded = (actual_num_frames - 2) // 8 * 8 + 1 # Alinhamento exato com app-20.py
|
| 158 |
-
if num_frames_padded != actual_num_frames:
|
| 159 |
-
print(f"Warning: actual_num_frames {actual_num_frames} and num_frames_padded {num_frames_padded} differ. Using num_frames_padded for pipeline.")
|
| 160 |
-
|
| 161 |
-
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
|
| 162 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
"
|
| 167 |
-
"
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
-
"num_frames": num_frames_padded,
|
| 171 |
-
"framerate": int(FPS),
|
| 172 |
-
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
|
| 173 |
-
"output_type": "pt",
|
| 174 |
-
"conditioning_items": None,
|
| 175 |
-
"media_items": None,
|
| 176 |
-
"decode_timestep": self.config['decode_timestep'],
|
| 177 |
-
"decode_noise_scale": self.config['decode_noise_scale'],
|
| 178 |
-
"stochastic_sampling": self.config['stochastic_sampling'],
|
| 179 |
-
"image_cond_noise_scale": 0.15, # Alinhado
|
| 180 |
-
"is_video": True,
|
| 181 |
-
"vae_per_channel_normalize": True,
|
| 182 |
-
"mixed_precision": self.config['precision'] + " mixed_precision",
|
| 183 |
-
"offload_to_cpu": False,
|
| 184 |
-
"enhance_prompt": False,
|
| 185 |
}
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
stg_mode_str = self.config.get('stg_mode', 'attention_values')
|
| 189 |
-
if stg_mode_str.lower() in ['stgav', 'attentionvalues']:
|
| 190 |
-
call_kwargs['skip_layer_strategy'] = SkipLayerStrategy.AttentionValues
|
| 191 |
-
# ... (adicionar outros elif como no app-20.py)
|
| 192 |
-
|
| 193 |
-
# Conditioning para modos
|
| 194 |
-
if mode == "image-to-video" and input_image_filepath:
|
| 195 |
-
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
|
| 196 |
-
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
|
| 197 |
-
call_kwargs['conditioning_items'] = ConditioningItem(media_tensor.to(base_device), 0, 1.0)
|
| 198 |
-
elif mode == "video-to-video" and input_video_filepath:
|
| 199 |
-
call_kwargs['media_items'] = load_media_file(media_path=input_video_filepath, height=actual_height, width=actual_width, max_frames=int(frames_to_use), padding=padding_values).to(base_device)
|
| 200 |
-
|
| 201 |
-
result_images_tensor = None
|
| 202 |
if improve_texture:
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
})
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
print(f"
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
if result_images_tensor is None:
|
| 245 |
-
raise ValueError("Generation failed.")
|
| 246 |
-
|
| 247 |
-
# Slicing e salvamento alinhados
|
| 248 |
-
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 249 |
-
slice_w_end = -pad_right if pad_right > 0 else None
|
| 250 |
-
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 251 |
-
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
| 252 |
-
video_np = np.clip(video_np, 0, 1) * 255.0
|
| 253 |
-
video_np = video_np.astype(np.uint8)
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
temp_dir = tempfile.mkdtemp()
|
| 256 |
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
video_writer.append_data(video_np[frame_idx])
|
| 263 |
-
except Exception as e:
|
| 264 |
-
print(f"Error saving video with macro_block_size=1: {e}")
|
| 265 |
-
with imageio.get_writer(output_video_path, fps=call_kwargs['framerate'], format='FFMPEG', codec='libx264', quality=8) as video_writer:
|
| 266 |
-
for frame_idx in range(video_np.shape[0]):
|
| 267 |
-
if progress_callback:
|
| 268 |
-
progress_callback(frame_idx / video_np.shape[0], desc="Saving video fallback ffmpeg")
|
| 269 |
-
video_writer.append_data(video_np[frame_idx])
|
| 270 |
-
|
| 271 |
return output_video_path, used_seed
|
| 272 |
-
|
| 273 |
except Exception as e:
|
| 274 |
-
print(f"!!!!!!!! ERRO no Worker {worker['id']}
|
| 275 |
raise e
|
| 276 |
finally:
|
| 277 |
-
print(f"Worker {worker['id']} Tarefa finalizada. Limpando cache e liberando worker...")
|
| 278 |
-
with torch.cuda.device(base_device):
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
torch.cuda.empty_cache()
|
| 282 |
-
worker['lock'].release()
|
| 283 |
|
| 284 |
# A instância do serviço é criada aqui, mas os modelos só serão carregados no primeiro clique.
|
| 285 |
-
video_generation_service = VideoService()
|
|
|
|
|
|
|
| 1 |
# video_service.py
|
| 2 |
|
| 3 |
import torch
|
|
|
|
| 29 |
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
|
| 30 |
sys.exit(1)
|
| 31 |
|
| 32 |
+
DEPS_DIR = Path("./deps")
|
| 33 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 34 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 35 |
run_setup()
|
|
|
|
| 40 |
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 41 |
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 42 |
|
| 43 |
+
add_deps_to_path()
|
| 44 |
|
| 45 |
# Importações específicas do modelo
|
| 46 |
from inference import (
|
|
|
|
| 122 |
return worker
|
| 123 |
time.sleep(0.1)
|
| 124 |
|
| 125 |
+
def generate(self, prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None,
|
| 126 |
+
height=512, width=704, mode="text-to-video", duration=2.0,
|
| 127 |
+
frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=1.0, # Ignorado, mas mantido por compatibilidade
|
| 128 |
improve_texture=True, progress_callback=None):
|
| 129 |
|
| 130 |
+
# A MÁGICA DO LAZY LOADING ACONTECE AQUI
|
| 131 |
self._ensure_models_are_loaded()
|
| 132 |
+
|
| 133 |
worker = self._acquire_worker()
|
| 134 |
base_device = worker['devices']['base']
|
| 135 |
upscaler_device = worker['devices']['upscaler']
|
| 136 |
|
| 137 |
try:
|
| 138 |
+
# ... (todo o resto do código da função generate permanece exatamente o mesmo) ...
|
| 139 |
+
if mode == "image-to-video" and not input_image_filepath: raise ValueError("Caminho da imagem é obrigatório para o modo image-to-video")
|
| 140 |
+
if mode == "video-to-video" and not input_video_filepath: raise ValueError("Caminho do vídeo é obrigatório para o modo video-to-video")
|
| 141 |
+
|
|
|
|
|
|
|
| 142 |
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
|
| 143 |
seed_everething(used_seed)
|
| 144 |
+
|
| 145 |
+
FPS = 24.0; MAX_NUM_FRAMES = 257
|
| 146 |
+
target_frames_rounded = round(duration * FPS)
|
| 147 |
+
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
|
|
|
|
|
|
|
|
|
| 148 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
|
| 149 |
|
| 150 |
+
height_padded = ((height - 1) // 32 + 1) * 32
|
| 151 |
+
width_padded = ((width - 1) // 32 + 1) * 32
|
| 152 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 154 |
|
| 155 |
+
call_kwargs_base = {
|
| 156 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "num_frames": actual_num_frames, "frame_rate": int(FPS),
|
| 157 |
+
"decode_timestep": 0.05, "decode_noise_scale": self.config["decode_noise_scale"],
|
| 158 |
+
"stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.025,
|
| 159 |
+
"is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 160 |
+
"offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
}
|
| 162 |
+
|
| 163 |
+
result_tensor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
if improve_texture:
|
| 165 |
+
downscale_factor = self.config.get("downscale_factor", 0.5)
|
| 166 |
+
downscaled_height_ideal = int(height_padded * downscale_factor); downscaled_width_ideal = int(width_padded * downscale_factor)
|
| 167 |
+
downscaled_height = ((downscaled_height_ideal - 1) // 32 + 1) * 32; downscaled_width = ((downscaled_width_ideal - 1) // 32 + 1) * 32
|
| 168 |
+
|
| 169 |
+
# --- PASSE 1 ---
|
| 170 |
+
first_pass_kwargs = call_kwargs_base.copy()
|
| 171 |
+
first_pass_kwargs.update({
|
| 172 |
+
"height": downscaled_height, "width": downscaled_width,
|
| 173 |
+
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
|
| 174 |
+
"output_type": "latent", "guidance_scale": 1.0,
|
| 175 |
+
"timesteps": self.config["first_pass"]["timesteps"],
|
| 176 |
+
"stg_scale": self.config["first_pass"]["stg_scale"],
|
| 177 |
+
"rescaling_scale": self.config["first_pass"]["rescaling_scale"],
|
| 178 |
+
"skip_block_list": self.config["first_pass"]["skip_block_list"]
|
| 179 |
+
})
|
| 180 |
+
|
| 181 |
+
if mode == "image-to-video":
|
| 182 |
+
padding_low_res = calculate_padding(downscaled_height, downscaled_width, downscaled_height, downscaled_width)
|
| 183 |
+
media_tensor_low_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, downscaled_height, downscaled_width)
|
| 184 |
+
media_tensor_low_res = torch.nn.functional.pad(media_tensor_low_res, padding_low_res)
|
| 185 |
+
first_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_low_res.to(base_device), 0, 1.0)]
|
| 186 |
+
|
| 187 |
+
print(f"Worker {worker['id']}: Iniciando passe 1 em {base_device}")
|
| 188 |
+
with torch.no_grad(): low_res_latents = worker['base_pipeline'](**first_pass_kwargs).images
|
| 189 |
|
| 190 |
+
low_res_latents = low_res_latents.to(upscaler_device)
|
| 191 |
+
with torch.no_grad(): high_res_latents = worker['latent_upsampler'](low_res_latents)
|
| 192 |
+
high_res_latents = high_res_latents.to(base_device)
|
| 193 |
|
| 194 |
+
# --- PASSE 2 ---
|
| 195 |
+
second_pass_kwargs = call_kwargs_base.copy()
|
| 196 |
+
high_res_h, high_res_w = downscaled_height * 2, downscaled_width * 2
|
| 197 |
+
second_pass_kwargs.update({
|
| 198 |
+
"height": high_res_h, "width": high_res_w, "latents": high_res_latents,
|
| 199 |
+
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
|
| 200 |
+
"output_type": "pt", "image_cond_noise_scale": 0.0, "guidance_scale": 1.0,
|
| 201 |
+
"timesteps": self.config["second_pass"]["timesteps"],
|
| 202 |
+
"stg_scale": self.config["second_pass"]["stg_scale"],
|
| 203 |
+
"rescaling_scale": self.config["second_pass"]["rescaling_scale"],
|
| 204 |
+
"skip_block_list": self.config["second_pass"]["skip_block_list"],
|
| 205 |
+
"tone_map_compression_ratio": self.config["second_pass"].get("tone_map_compression_ratio", 0.0)
|
| 206 |
})
|
| 207 |
|
| 208 |
+
if mode == "image-to-video":
|
| 209 |
+
padding_high_res = calculate_padding(high_res_h, high_res_w, high_res_h, high_res_w)
|
| 210 |
+
media_tensor_high_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, high_res_h, high_res_w)
|
| 211 |
+
media_tensor_high_res = torch.nn.functional.pad(media_tensor_high_res, padding_high_res)
|
| 212 |
+
second_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_high_res.to(base_device), 0, 1.0)]
|
| 213 |
+
|
| 214 |
+
print(f"Worker {worker['id']}: Iniciando passe 2 em {base_device}")
|
| 215 |
+
with torch.no_grad(): result_tensor = worker['base_pipeline'](**second_pass_kwargs).images
|
| 216 |
+
|
| 217 |
+
else: # Passe Único
|
| 218 |
+
single_pass_kwargs = call_kwargs_base.copy()
|
| 219 |
+
first_pass_config = self.config["first_pass"]
|
| 220 |
+
single_pass_kwargs.update({
|
| 221 |
+
"height": height_padded, "width": width_padded, "output_type": "pt",
|
| 222 |
+
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
|
| 223 |
+
"guidance_scale": 1.0, **first_pass_config
|
| 224 |
+
})
|
| 225 |
+
if mode == "image-to-video":
|
| 226 |
+
media_tensor_final = load_image_to_tensor_with_resize_and_crop(input_image_filepath, height_padded, width_padded)
|
| 227 |
+
media_tensor_final = torch.nn.functional.pad(media_tensor_final, padding_values)
|
| 228 |
+
single_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_final.to(base_device), 0, 1.0)]
|
| 229 |
+
elif mode == "video-to-video":
|
| 230 |
+
single_pass_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height_padded, width=width_padded, max_frames=int(frames_to_use), padding=padding_values).to(base_device)
|
| 231 |
|
| 232 |
+
print(f"Worker {worker['id']}: Iniciando passe único em {base_device}")
|
| 233 |
+
with torch.no_grad(): result_tensor = worker['base_pipeline'](**single_pass_kwargs).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
if result_tensor.shape[-2:] != (height, width):
|
| 236 |
+
num_frames_final = result_tensor.shape[2]
|
| 237 |
+
videos_tensor = result_tensor.permute(0, 2, 1, 3, 4).reshape(-1, result_tensor.shape[1], result_tensor.shape[3], result_tensor.shape[4])
|
| 238 |
+
videos_resized = torch.nn.functional.interpolate(videos_tensor, size=(height, width), mode='bilinear', align_corners=False)
|
| 239 |
+
result_tensor = videos_resized.reshape(result_tensor.shape[0], num_frames_final, result_tensor.shape[1], height, width).permute(0, 2, 1, 3, 4)
|
| 240 |
+
|
| 241 |
+
result_tensor = result_tensor[:, :, :actual_num_frames, (pad_top if pad_top > 0 else None):(-pad_bottom if pad_bottom > 0 else None), (pad_left if pad_left > 0 else None):(-pad_right if pad_right > 0 else None)]
|
| 242 |
+
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
| 243 |
temp_dir = tempfile.mkdtemp()
|
| 244 |
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
|
| 245 |
+
|
| 246 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs_base["frame_rate"], codec='libx264', quality=8) as writer:
|
| 247 |
+
for i, frame in enumerate(video_np):
|
| 248 |
+
writer.append_data(frame)
|
| 249 |
+
if progress_callback: progress_callback(i + 1, len(video_np))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
return output_video_path, used_seed
|
| 251 |
+
|
| 252 |
except Exception as e:
|
| 253 |
+
print(f"!!!!!!!! ERRO no Worker {worker['id']} !!!!!!!!\n{e}")
|
| 254 |
raise e
|
| 255 |
finally:
|
| 256 |
+
print(f"Worker {worker['id']}: Tarefa finalizada. Limpando cache e liberando worker...")
|
| 257 |
+
with torch.cuda.device(base_device): torch.cuda.empty_cache()
|
| 258 |
+
with torch.cuda.device(upscaler_device): torch.cuda.empty_cache()
|
| 259 |
+
worker["lock"].release()
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# A instância do serviço é criada aqui, mas os modelos só serão carregados no primeiro clique.
|
| 262 |
+
video_generation_service = VideoService()
|