# aduc_framework/managers/wan_manager.py # WanManager v0.1.4 (final) import os import platform import shutil import subprocess import tempfile import random from typing import List, Any, Optional, Tuple import numpy as np import torch from PIL import Image # SDPA / FlashAttention context (PyTorch 2.1+ / 2.0 fallback) try: from torch.nn.attention import sdpa_kernel, SDPBackend # PyTorch 2.1+ _SDPA_NEW = True except Exception: from torch.backends.cuda import sdp_kernel as _legacy_sdp # PyTorch 2.0 _SDPA_NEW = False from diffusers import FlowMatchEulerDiscreteScheduler from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline from diffusers.models.transformers.transformer_wan import WanTransformer3DModel from diffusers.utils.export_utils import export_to_video class WanManager: """ Wan i2v Manager: - Banner com verificações PyTorch/CUDA/SDPA/GPUs no startup - 2 Transformers 3D (alto/baixo ruído), bf16, device_map='auto', max_memory por GPU - LoRA Lightning fundida e descarregada - SDPA com preferência por FlashAttention + fallback (efficient/math) - 3 batentes: image(t=0, peso 1), handle(k da UI alinhado a 1 (mod 4)), last(t final) - Fallback se a pipeline não suportar args customizados (handle/anchor) """ MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" TRANSFORMER_ID = "cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers" # Dimensões/frames MAX_DIMENSION = 832 MIN_DIMENSION = 480 DIMENSION_MULTIPLE = 16 SQUARE_SIZE = 480 FIXED_FPS = 16 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 81 default_negative_prompt = ( "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量," "JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体," "手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝," ) def __init__(self) -> None: # Banner de verificação self._print_env_banner() print("Loading models into memory. This may take a few minutes...") # Sharding automático com chaves válidas (inteiros e "cpu") n_gpus = torch.cuda.device_count() max_memory = {i: "45GiB" for i in range(n_gpus)} # ajuste conforme VRAM max_memory["cpu"] = "120GiB" transformer = WanTransformer3DModel.from_pretrained( self.TRANSFORMER_ID, subfolder="transformer", torch_dtype=torch.bfloat16, device_map="auto", max_memory=max_memory, ) transformer_2 = WanTransformer3DModel.from_pretrained( self.TRANSFORMER_ID, subfolder="transformer_2", torch_dtype=torch.bfloat16, device_map="auto", max_memory=max_memory, ) self.pipe = WanImageToVideoPipeline.from_pretrained( self.MODEL_ID, transformer=transformer, transformer_2=transformer_2, torch_dtype=torch.bfloat16, ) # Scheduler FlowMatch Euler (shift=32.0) self.pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( self.pipe.scheduler.config, shift=32.0 ) # LoRA Lightning (fusão) print("Applying 8-step Lightning LoRA...") try: self.pipe.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v", ) self.pipe.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v_2", load_into_transformer_2=True, ) self.pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0]) print("Fusing LoRA weights into the main model...") self.pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"]) self.pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"]) self.pipe.unload_lora_weights() print("Lightning LoRA successfully fused. Model is ready for fast 8-step generation.") except Exception as e: print(f"[WanManager] AVISO: Falha ao fundir LoRA Lightning (seguirá sem fusão): {e}") print("All models loaded. Service is ready.") # ---------- Banner/Checks ---------- def _print_env_banner(self) -> None: def _safe_get(fn, default="n/a"): try: return fn() except Exception: return default torch_ver = getattr(torch, "__version__", "unknown") cuda_rt = getattr(torch.version, "cuda", "unknown") cudnn_ver = _safe_get(lambda: torch.backends.cudnn.version()) cuda_ok = torch.cuda.is_available() n_gpu = torch.cuda.device_count() if cuda_ok else 0 devs, total_vram, caps = [], [], [] if cuda_ok: for i in range(n_gpu): props = torch.cuda.get_device_properties(i) devs.append(f"cuda:{i} {props.name}") total_vram.append(f"{props.total_memory/1024**3:.1f}GiB") caps.append(f"{props.major}.{props.minor}") # BF16/TF32 try: bf16_supported = bool(getattr(torch.cuda, "is_bf16_supported", lambda: False)()) except Exception: bf16_supported = False if cuda_ok and caps: major = int(caps[0].split(".")[0]) bf16_supported = major >= 8 tf32_allowed = getattr(torch.backends.cuda.matmul, "allow_tf32", False) # SDPA API try: from torch.nn.attention import sdpa_kernel as _probe1 # noqa sdpa_api = "torch.nn.attention (2.1+)" except Exception: try: from torch.backends.cuda import sdp_kernel as _probe2 # noqa sdpa_api = "torch.backends.cuda (2.0)" except Exception: sdpa_api = "unavailable" # xFormers try: import xformers # noqa xformers_ok = True except Exception: xformers_ok = False alloc_conf = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "unset") visible = os.environ.get("CUDA_VISIBLE_DEVICES", "unset") python_ver = platform.python_version() nvcc = shutil.which("nvcc") nvcc_ver = "n/a" if nvcc: try: nvcc_ver = subprocess.check_output([nvcc, "--version"], text=True).strip().splitlines()[-1] except Exception: nvcc_ver = "n/a" banner_lines = [ "================== WAN MANAGER • ENV ==================", f"Python : {python_ver}", f"PyTorch : {torch_ver}", f"CUDA (torch) : {cuda_rt}", f"cuDNN : {cudnn_ver}", f"CUDA available : {cuda_ok}", f"GPU count : {n_gpu}", f"GPUs : {', '.join(devs) if devs else 'n/a'}", f"GPU VRAM : {', '.join(total_vram) if total_vram else 'n/a'}", f"Compute Capability : {', '.join(caps) if caps else 'n/a'}", f"BF16 supported : {bf16_supported}", f"TF32 allowed : {tf32_allowed}", f"SDPA API : {sdpa_api}", f"xFormers available : {xformers_ok}", f"CUDA_VISIBLE_DEVICES: {visible}", f"PYTORCH_CUDA_ALLOC_CONF: {alloc_conf}", f"nvcc : {nvcc_ver}", "=======================================================", ] print("\n".join(banner_lines)) # ---------- utils de imagem ---------- def _round_multiple(self, x: int, multiple: int) -> int: return int(round(x / multiple) * multiple) def process_image_for_video(self, image: Image.Image) -> Image.Image: w, h = image.size if w == h: return image.resize((self.SQUARE_SIZE, self.SQUARE_SIZE), Image.Resampling.LANCZOS) ar = w / h nw, nh = w, h # clamp superior if nw > self.MAX_DIMENSION or nh > self.MAX_DIMENSION: s = (self.MAX_DIMENSION / nw) if ar > 1 else (self.MAX_DIMENSION / nh) nw, nh = nw * s, nh * s # clamp inferior if nw < self.MIN_DIMENSION or nh < self.MIN_DIMENSION: s = (self.MIN_DIMENSION / nh) if ar > 1 else (self.MIN_DIMENSION / nw) nw, nh = nw * s, nh * s fw = self._round_multiple(int(nw), self.DIMENSION_MULTIPLE) fh = self._round_multiple(int(nh), self.DIMENSION_MULTIPLE) # mínimos finais coerentes fw = max(fw, self.MIN_DIMENSION if ar < 1 else self.SQUARE_SIZE) fh = max(fh, self.MIN_DIMENSION if ar > 1 else self.SQUARE_SIZE) return image.resize((fw, fh), Image.Resampling.LANCZOS) def resize_and_crop_to_match(self, target: Image.Image, ref: Image.Image) -> Image.Image: rw, rh = ref.size tw, th = target.size s = max(rw / tw, rh / th) nw, nh = int(tw * s), int(th * s) resized = target.resize((nw, nh), Image.Resampling.LANCZOS) left, top = (nw - rw) // 2, (nh - rh) // 2 return resized.crop((left, top, left + rw, top + rh)) # ---------- API ---------- def generate_video_from_conditions( self, images_condition_items: List[List[Any]], # [[image(Image), frame(int|str), peso(float)], ...] prompt: str, negative_prompt: Optional[str], duration_seconds: float, steps: int, guidance_scale: float, guidance_scale_2: float, seed: int, randomize_seed: bool, output_type: str = "np", ) -> Tuple[str, int]: # validação if not images_condition_items or len(images_condition_items) < 2: raise ValueError("Forneça ao menos dois itens (início e fim).") items = images_condition_items start_image = items[0][0] end_image = items[-1][0] if start_image is None or end_image is None: raise ValueError("As imagens inicial e final não podem ser vazias.") if not isinstance(start_image, Image.Image) or not isinstance(end_image, Image.Image): raise TypeError("Patches devem ser PIL.Image.") # handle opcional handle_image = items[1][0] if len(items) >= 3 else None # pesos handle_weight = float(items[1][2]) if len(items) >= 3 and items[1][2] is not None else 1.0 end_weight = float(items[-1][2]) if len(items[-1]) >= 3 and items[-1][2] is not None else 1.0 # preprocess e alinhamento HxW processed_start = self.process_image_for_video(start_image) processed_end = self.resize_and_crop_to_match(end_image, processed_start) processed_handle = self.resize_and_crop_to_match(handle_image, processed_start) if handle_image else None H, W = processed_start.height, processed_start.width # frames (pipeline ajusta para 4n+1 internamente, aqui só clamp) num_frames = int(round(duration_seconds * self.FIXED_FPS)) num_frames = int(np.clip(num_frames, self.MIN_FRAMES_MODEL, self.MAX_FRAMES_MODEL)) # seed current_seed = random.randint(0, np.iinfo(np.int32).max) if randomize_seed else int(seed) generator = torch.Generator().manual_seed(current_seed) # argumentos base call_kwargs = dict( image=processed_start, last_image=processed_end, prompt=prompt, negative_prompt=negative_prompt if negative_prompt else self.default_negative_prompt, height=H, width=W, num_frames=num_frames, guidance_scale=float(guidance_scale), guidance_scale_2=float(guidance_scale_2), num_inference_steps=int(steps), generator=generator, output_type=output_type, ) # mapear frame da UI do handle → índice latente alinhado a 1 (mod 4) corrected_handle_index = int(items[1][1]) # Montar kwargs finais (com/sem handle) if processed_handle is not None: kwargs = dict( **call_kwargs, handle_image=processed_handle, handle_weight=float(handle_weight), handle_latent_index=corrected_handle_index, anchor_weight_last=float(end_weight), ) else: kwargs = dict( **call_kwargs, anchor_weight_last=float(end_weight), ) # Execução com SDPA e fallback de backend result = None result = self.pipe(**kwargs) frames = result.frames[0] with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp: video_path = tmp.name export_to_video(frames, video_path, fps=self.FIXED_FPS) return video_path, current_seed