Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 3 |
import gradio as gr
|
| 4 |
import librosa
|
| 5 |
|
|
@@ -9,26 +9,29 @@ BATCH_SIZE = 8
|
|
| 9 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
# Load model and processor
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Update the generation config for transcription
|
| 16 |
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
| 17 |
-
model.config.no_repeat_ngram_size = 3
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
# Load the audio
|
| 21 |
audio, sampling_rate = librosa.load(filepath, sr=16000)
|
| 22 |
|
| 23 |
# Define chunk size (e.g., 30 seconds)
|
| 24 |
-
chunk_duration =
|
| 25 |
chunk_samples = chunk_duration * sampling_rate
|
| 26 |
|
| 27 |
# Process audio in chunks
|
| 28 |
transcription = []
|
| 29 |
for i in range(0, len(audio), chunk_samples):
|
| 30 |
chunk = audio[i:i + chunk_samples]
|
| 31 |
-
chunk_start_time = i / sampling_rate # Calculate chunk start time in seconds
|
| 32 |
|
| 33 |
# Convert the chunk into input features
|
| 34 |
inputs = processor(audio=chunk, sampling_rate=16000, return_tensors="pt").input_features
|
|
@@ -36,25 +39,22 @@ def transcribe_speech_with_timestamps(filepath):
|
|
| 36 |
# Generate transcription for the chunk
|
| 37 |
generated_ids = model.generate(
|
| 38 |
inputs,
|
| 39 |
-
max_new_tokens=444,
|
| 40 |
-
return_dict_in_generate=True,
|
| 41 |
-
output_scores=False,
|
| 42 |
-
output_attentions=False,
|
| 43 |
-
output_hidden_states=False,
|
| 44 |
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
| 45 |
)
|
| 46 |
|
| 47 |
-
# Decode
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 58 |
return "\n".join(transcription)
|
| 59 |
|
| 60 |
demo = gr.Blocks()
|
|
@@ -72,6 +72,6 @@ file_transcribe = gr.Interface(
|
|
| 72 |
)
|
| 73 |
|
| 74 |
with demo:
|
| 75 |
-
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])
|
| 76 |
|
| 77 |
demo.launch(debug=True)
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 3 |
import gradio as gr
|
| 4 |
import librosa
|
| 5 |
|
|
|
|
| 9 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
# Load model and processor
|
| 12 |
+
model_name = "EwoutLagendijk/whisper-small-indonesian"
|
| 13 |
+
|
| 14 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
| 15 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 16 |
|
| 17 |
# Update the generation config for transcription
|
| 18 |
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
|
|
|
| 19 |
|
| 20 |
+
# Initialize the translation pipeline (using a model like `Helsinki-NLP/opus-mt-id-en` for Indonesian to English)
|
| 21 |
+
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-id-en")
|
| 22 |
+
|
| 23 |
+
def transcribe_speech(filepath):
|
| 24 |
# Load the audio
|
| 25 |
audio, sampling_rate = librosa.load(filepath, sr=16000)
|
| 26 |
|
| 27 |
# Define chunk size (e.g., 30 seconds)
|
| 28 |
+
chunk_duration = 5 # in seconds
|
| 29 |
chunk_samples = chunk_duration * sampling_rate
|
| 30 |
|
| 31 |
# Process audio in chunks
|
| 32 |
transcription = []
|
| 33 |
for i in range(0, len(audio), chunk_samples):
|
| 34 |
chunk = audio[i:i + chunk_samples]
|
|
|
|
| 35 |
|
| 36 |
# Convert the chunk into input features
|
| 37 |
inputs = processor(audio=chunk, sampling_rate=16000, return_tensors="pt").input_features
|
|
|
|
| 39 |
# Generate transcription for the chunk
|
| 40 |
generated_ids = model.generate(
|
| 41 |
inputs,
|
| 42 |
+
max_new_tokens=444, # Max allowed by Whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# Decode and append the transcription
|
| 47 |
+
chunk_transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 48 |
+
|
| 49 |
+
# Translate the transcription to English (or another language of choice)
|
| 50 |
+
chunk_translation = translation_pipeline(chunk_transcription)[0]['translation_text']
|
| 51 |
+
|
| 52 |
+
# Append both transcription and translation
|
| 53 |
+
transcription.append(f"Chunk {i//chunk_samples + 1}:\n")
|
| 54 |
+
transcription.append(f"Transcription: {chunk_transcription}\n")
|
| 55 |
+
transcription.append(f"Translation: {chunk_translation}\n\n")
|
| 56 |
+
|
| 57 |
+
# Combine all chunk transcriptions and translations into a single string
|
| 58 |
return "\n".join(transcription)
|
| 59 |
|
| 60 |
demo = gr.Blocks()
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
with demo:
|
| 75 |
+
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe and translate Microphone", "Transcribe and translate Audio File"])
|
| 76 |
|
| 77 |
demo.launch(debug=True)
|