Felipe Silva commited on
Commit
d4f3e2b
·
1 Parent(s): 6c3954c

removed comments

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. rag_utils.py +0 -11
app.py CHANGED
@@ -3,12 +3,12 @@ import spaces
3
  import torch
4
  import os
5
  from huggingface_hub import snapshot_download
6
- from utils import read_file_pdf, fix_type, extract_content_in_pdf, doc_converter, EXTENSIONS_FILES, EXTENSIONS_IMG_FILES, MSG_NENHUM_ARQUIVO_ENVIADO, MSG_TEXTO_NAO_EXTRAIDO
7
  from rag_utils import create_split_doc, store_docs, create_rag_chain
8
  import config
9
 
10
  zero = torch.Tensor([0]).cuda()
11
- print(zero.device) # <-- 'cpu' 🤔
12
 
13
  MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
14
 
 
3
  import torch
4
  import os
5
  from huggingface_hub import snapshot_download
6
+ from utils import doc_converter, MSG_NENHUM_ARQUIVO_ENVIADO, MSG_TEXTO_NAO_EXTRAIDO
7
  from rag_utils import create_split_doc, store_docs, create_rag_chain
8
  import config
9
 
10
  zero = torch.Tensor([0]).cuda()
11
+ print(zero.device)
12
 
13
  MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
14
 
rag_utils.py CHANGED
@@ -5,11 +5,8 @@ from langchain.prompts import PromptTemplate
5
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
7
  from langchain.llms import HuggingFacePipeline
8
-
9
- from langchain.chat_models import ChatOpenAI
10
  from langchain.chains import RetrievalQA
11
 
12
- import spaces
13
  import config
14
  import torch
15
  print(torch.cuda.is_available())
@@ -18,7 +15,6 @@ device = f'cuda:{torch.cuda.current_device()}' if torch.cuda.is_available() else
18
 
19
  import os
20
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
21
- # cache_dir = "/home/user/.cache/huggingface" #"./model/qwen-awq" #"/home/felipe/.cache/huggingface/transformers" #"/home/user/.cache/huggingface"
22
 
23
  _embedding_instance = None
24
  _model_instance = None
@@ -32,9 +28,6 @@ def get_embedding_model():
32
  _embedding_instance = HuggingFaceEmbeddings(model_name=config.local_emb_path, model_kwargs={"device": "cpu"})
33
  return _embedding_instance
34
 
35
- # model_name = "Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8" #"Qwen/Qwen2.5-7B-Instruct-AWQ" #"Qwen/Qwen2.5-7B-Instruct"
36
-
37
- # @spaces.GPU
38
  def get_model():
39
  global _model_instance
40
  if _model_instance is None:
@@ -49,8 +42,6 @@ def get_model():
49
 
50
  return _model_instance
51
 
52
- # _model_instance.to(device)
53
-
54
  def get_tokenizer():
55
  global _tokenizer
56
  if _tokenizer is None:
@@ -66,7 +57,6 @@ def create_split_doc(raw_text):
66
 
67
  return docs
68
 
69
- # @spaces.GPU
70
  def store_docs(docs):
71
  embedding_model = get_embedding_model()
72
  vectorstore = FAISS.from_documents(docs, embedding_model)
@@ -90,7 +80,6 @@ Pergunta:
90
  )
91
  return prompt_template
92
 
93
- # @spaces.GPU
94
  def create_rag_chain(vectorstore):
95
  pipe = pipeline(
96
  "text-generation",
 
5
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
7
  from langchain.llms import HuggingFacePipeline
 
 
8
  from langchain.chains import RetrievalQA
9
 
 
10
  import config
11
  import torch
12
  print(torch.cuda.is_available())
 
15
 
16
  import os
17
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
 
18
 
19
  _embedding_instance = None
20
  _model_instance = None
 
28
  _embedding_instance = HuggingFaceEmbeddings(model_name=config.local_emb_path, model_kwargs={"device": "cpu"})
29
  return _embedding_instance
30
 
 
 
 
31
  def get_model():
32
  global _model_instance
33
  if _model_instance is None:
 
42
 
43
  return _model_instance
44
 
 
 
45
  def get_tokenizer():
46
  global _tokenizer
47
  if _tokenizer is None:
 
57
 
58
  return docs
59
 
 
60
  def store_docs(docs):
61
  embedding_model = get_embedding_model()
62
  vectorstore = FAISS.from_documents(docs, embedding_model)
 
80
  )
81
  return prompt_template
82
 
 
83
  def create_rag_chain(vectorstore):
84
  pipe = pipeline(
85
  "text-generation",