File size: 20,031 Bytes
10e9b7d
 
eccf8e4
3c4371f
6939dd2
 
 
c74fc86
6939dd2
c74fc86
 
63c91ce
5a549a8
 
 
 
 
 
12eaf5c
 
5a549a8
eec60f5
bc3f6a6
 
 
37d54d8
 
 
 
 
5a549a8
10e9b7d
d59f015
e80aab9
3db6293
eec60f5
 
e80aab9
2eea0c9
31243f4
d59f015
2eea0c9
6939dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5557a0e
 
 
 
 
 
 
 
 
 
6939dd2
5557a0e
 
6939dd2
 
 
 
 
 
 
5557a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74fc86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5557a0e
c74fc86
 
 
63c91ce
c74fc86
 
 
5557a0e
 
 
 
c74fc86
 
5557a0e
 
 
 
 
 
6939dd2
5557a0e
6939dd2
 
 
 
 
5557a0e
6939dd2
 
 
 
 
 
 
 
 
 
5557a0e
6939dd2
 
 
 
 
 
 
 
 
 
 
5557a0e
6939dd2
4e00399
6939dd2
5557a0e
 
 
c74fc86
 
 
 
 
 
 
 
6939dd2
c74fc86
6939dd2
 
5557a0e
 
2eea0c9
 
6939dd2
31243f4
2eea0c9
 
37d54d8
5a549a8
 
 
 
 
 
12eaf5c
 
5e5f9d1
 
37d54d8
 
 
bc3f6a6
eec60f5
5a549a8
2eea0c9
37d54d8
2eea0c9
12eaf5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5f9d1
 
 
 
 
 
 
12eaf5c
8ea8c88
5a549a8
31243f4
6939dd2
31243f4
 
5557a0e
 
 
5a549a8
5557a0e
 
 
 
 
 
5a549a8
 
 
5557a0e
 
5a549a8
4021bf3
6939dd2
eec60f5
6939dd2
 
 
31243f4
 
 
 
7d65c66
eec60f5
3c4371f
7e4a06b
eec60f5
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
2eea0c9
 
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
eec60f5
 
31243f4
e80aab9
31243f4
 
3c4371f
eec60f5
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
eec60f5
31243f4
eec60f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
eec60f5
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
2eea0c9
 
 
 
 
 
 
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
eec60f5
 
 
7d65c66
 
e80aab9
eec60f5
e80aab9
 
eec60f5
7d65c66
3c4371f
eec60f5
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
eec60f5
7d65c66
 
eec60f5
 
 
7d65c66
eec60f5
 
 
7d65c66
eec60f5
3c4371f
31243f4
eec60f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import os
import gradio as gr
import requests
import pandas as pd
import time
import threading
import random
import litellm
from litellm import RateLimitError

# Enable debug mode to see detailed error information
litellm.verbose = True
from smolagents import (
    CodeAgent,
    DuckDuckGoSearchTool,
    VisitWebpageTool,
    PythonInterpreterTool,
    WikipediaSearchTool,
    SpeechToTextTool,
    LiteLLMModel,
)
from libs.questionHelper.file_tools import fetch_task_files
from libs.chess.chess_tools import analyze_chess_image, analyze_chess_position
from libs.transcription.transcription_tools import transcribe_audio
from libs.youtube.youtube_tools import analyze_youtube_video, get_youtube_video_info
from libs.youtube.youtube_web_fallback import (
    search_youtube_video_info,
    extract_youtube_video_id,
    get_youtube_noembed_info,
)


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
FILES_AVAILABLE_PREFIX = "FILES_AVAILABLE: "
FILES_AVAILABLE_SUFFIX = "\n\n"


# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------


class TokenBucketRateLimiter:
    """Simple token-bucket rate limiter.

    capacity: max tokens in bucket (burst size)
    refill_rate: tokens added per second
    """

    def __init__(self, capacity: int, refill_rate: float):
        self.capacity = float(capacity)
        self._tokens = float(capacity)
        self.refill_rate = float(refill_rate)
        self._lock = threading.Lock()
        self._last = time.monotonic()

    def acquire(self, tokens: float = 1.0):
        with self._lock:
            now = time.monotonic()
            elapsed = now - self._last
            # Refill
            self._tokens = min(self.capacity, self._tokens + elapsed * self.refill_rate)
            self._last = now
            if self._tokens >= tokens:
                self._tokens -= tokens
                return 0.0
            # Need to wait for enough tokens
            required = tokens - self._tokens
            wait_time = required / self.refill_rate
            # consume what will be available after waiting
            self._tokens = 0.0
            return wait_time


class RateLimitedModel:
    """Wraps a model-like callable and enforces a TokenBucketRateLimiter before each call with retry logic."""

    def __init__(
        self,
        model_obj,
        rpm: int = 8,
        burst: int | None = None,
        max_retries: int = 10,
        base_delay: float = 30.0,
    ):
        self._model = model_obj
        self.max_retries = max_retries
        self.base_delay = base_delay
        # rpm -> tokens per minute
        capacity = burst if burst is not None else max(1, rpm)
        refill_rate = float(rpm) / 60.0
        self._limiter = TokenBucketRateLimiter(
            capacity=capacity, refill_rate=refill_rate
        )

    def _call_with_retry(self, func, *args, **kwargs):
        """Call a function with retry logic for rate limit errors."""
        last_exception = None
        for attempt in range(1, self.max_retries + 1):
            try:
                # Apply rate limiting before each attempt
                wait = self._limiter.acquire(1.0)
                if wait > 0:
                    jitter = random.uniform(0.0, 0.5)
                    total_wait = wait + jitter
                    print(
                        f"RateLimitedModel sleeping {total_wait:.2f}s to respect RPM limit"
                    )
                    time.sleep(total_wait)

                print(f"Model call attempt {attempt} of {self.max_retries}")
                result = func(*args, **kwargs)
                print(f"Model call attempt {attempt} succeeded")
                return result

            except Exception as e:
                last_exception = e
                error_str = str(e).lower()

                # Check if this is a rate limit error (various ways it might be reported)
                is_rate_limit = (
                    isinstance(e, RateLimitError)
                    or "rate limit" in error_str
                    or "quota" in error_str
                    or "429" in error_str
                    or "resource_exhausted" in error_str
                    or "too many requests" in error_str
                )

                # Check if this is a 503 server overload error
                is_server_overload = (
                    "503" in error_str
                    or "overloaded" in error_str
                    or "unavailable" in error_str
                    or "service unavailable" in error_str
                    or "internalservererror" in error_str
                )

                # Retry for both rate limit and server overload errors
                if is_rate_limit or is_server_overload:
                    error_type = (
                        "Rate limit" if is_rate_limit else "Server overload (503)"
                    )
                    print(f"{error_type} error on attempt {attempt}: {e}")
                    if attempt < self.max_retries:
                        # Use exponential backoff for 503 errors, longer delays
                        if is_server_overload:
                            delay = min(
                                120, self.base_delay * (2**attempt)
                            ) + random.uniform(0, 10)
                        else:
                            delay = self.base_delay + random.uniform(0, 5)
                        print(f"Waiting {delay:.1f}s before retry {attempt + 1}...")
                        time.sleep(delay)
                        continue
                else:
                    # Non-retryable error
                    print(f"Non-retryable error on attempt {attempt}: {e}")
                    raise e

        # All retries exhausted
        print(f"All {self.max_retries} attempts failed. Raising last exception.")
        raise last_exception

    def __call__(self, *args, **kwargs):
        return self._call_with_retry(self._model, *args, **kwargs)

    def __getattr__(self, name: str):
        """Proxy attribute access to the underlying model.

        For callable attributes (like `generate`) we wrap the call so the
        token-bucket rate limiter and retry logic are applied consistently.
        """
        # Avoid recursion
        if name.startswith("_"):
            raise AttributeError(name)

        attr = getattr(self._model, name)

        if callable(attr):

            def wrapped(*args, **kwargs):
                return self._call_with_retry(attr, *args, **kwargs)

            # Preserve original metadata where possible
            try:
                wrapped.__name__ = getattr(attr, "__name__", wrapped.__name__)
            except Exception:
                pass
            return wrapped

        return attr


# Wrap the model with a rate-limiter and retry logic. Default RPM is reduced to 8
# but can be configured via the MODEL_RPM environment variable.
_configured_rpm = int(os.getenv("MODEL_RPM", "8"))
_configured_burst = None
_configured_max_retries = int(os.getenv("MODEL_MAX_RETRIES", "10"))
_configured_base_delay = float(os.getenv("MODEL_BASE_DELAY", "30.0"))

# You can switch models here if Gemini continues to have issues
# Alternative options:
# - "gemini/gemini-1.5-flash" (older but more stable)
# - "gemini/gemini-1.5-pro" (more expensive but more capacity)
# - "gpt-4o-mini" or "gpt-3.5-turbo" (OpenAI alternatives)
_model_id = os.getenv("MODEL_ID", "gemini/gemini-2.5-flash")
print(f"Using model: {_model_id}")

model = RateLimitedModel(
    LiteLLMModel(model_id=_model_id, temperature=0.2),
    rpm=_configured_rpm,
    burst=_configured_burst,
    max_retries=_configured_max_retries,
    base_delay=_configured_base_delay,
)


class BasicAgent:
    def __init__(self, name: str = "GGSAgent"):
        self.name = name

        self.code_agent = CodeAgent(
            tools=[
                DuckDuckGoSearchTool(),
                VisitWebpageTool(),
                PythonInterpreterTool(),
                WikipediaSearchTool(),
                SpeechToTextTool(),
                transcribe_audio,
                analyze_youtube_video,
                get_youtube_video_info,
                search_youtube_video_info,
                extract_youtube_video_id,
                get_youtube_noembed_info,
                analyze_chess_position,
                analyze_chess_image,
            ],
            model=model,
            max_steps=25,
            verbosity_level=1,
            additional_authorized_imports=[
                "json",
                "math",
                "pandas",
                "yt_dlp",
                "tempfile",
                "os",
                "torch",
                "whisper",
                "re",
                "litellm",
                "requests",
                "time",
                "threading",
                "random",
                "cv2",
                "numpy",
                "PIL",
                "base64",
                "io",
                "pathlib",
                "subprocess",
            ],
            add_base_tools=True
        )
        print("BasicAgent initialized.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        print(f"Starting agent execution with model retry logic enabled...")

        start_time = time.time()
        try:
            # The retry logic is now handled at the model level within RateLimitedModel
            # so we can call the agent directly
            response = self.code_agent(question)

            duration = time.time() - start_time
            print(f"Agent completed successfully in {duration:.1f}s")
            print(f"Agent returning response: {response}")
            return response
        except Exception as e:
            duration = time.time() - start_time
            print(f"Error in code agent after {duration:.1f}s: {e}")
            return f"AGENT ERROR: {e}"


CACHE_DIR = "cache/gaia_validation"


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent_name = os.getenv("AGENT_NAME", "GGSAgent")
        agent = BasicAgent(name=agent_name)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        # Fetch any associated files from GAIA validation (if present) and prepend a brief summary to the question
        try:
            try:
                file_results = fetch_task_files(
                    task_id, dest_dir=CACHE_DIR, transcribe_mp3=False
                )
            except Exception as e:
                print(f"Warning: failed to fetch files for {task_id}: {e}")
                file_results = {}

            # Build a compact file summary for the agent prompt
            file_summaries = []
            for ext, info in (file_results or {}).items():
                status = info.get("status")
                path = info.get("path")
                if status == "ok" and path:
                    file_summaries.append(f"{ext}=OK@{path}")
                else:
                    file_summaries.append(f"{ext}={status}")

            files_note = (
                ""
                if not file_summaries
                else (
                    FILES_AVAILABLE_PREFIX
                    + "; ".join(file_summaries)
                    + FILES_AVAILABLE_SUFFIX
                )
            )

            prompt_with_files = files_note + question_text

            submitted_answer = agent(prompt_with_files)
            answers_payload.append(
                {"task_id": task_id, "submitted_answer": submitted_answer}
            )
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": submitted_answer,
                }
            )
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            error_answer = f"AGENT ERROR: {e}"
            answers_payload.append(
                {"task_id": task_id, "submitted_answer": error_answer}
            )
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": error_answer,
                }
            )

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "agent_name": getattr(agent, "name", "BasicAgent"),
        "answers": answers_payload,
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False
    )
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(
            f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
        )
    else:
        print(
            "ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
        )

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)