File size: 20,031 Bytes
10e9b7d eccf8e4 3c4371f 6939dd2 c74fc86 6939dd2 c74fc86 63c91ce 5a549a8 12eaf5c 5a549a8 eec60f5 bc3f6a6 37d54d8 5a549a8 10e9b7d d59f015 e80aab9 3db6293 eec60f5 e80aab9 2eea0c9 31243f4 d59f015 2eea0c9 6939dd2 5557a0e 6939dd2 5557a0e 6939dd2 5557a0e c74fc86 5557a0e c74fc86 63c91ce c74fc86 5557a0e c74fc86 5557a0e 6939dd2 5557a0e 6939dd2 5557a0e 6939dd2 5557a0e 6939dd2 5557a0e 6939dd2 4e00399 6939dd2 5557a0e c74fc86 6939dd2 c74fc86 6939dd2 5557a0e 2eea0c9 6939dd2 31243f4 2eea0c9 37d54d8 5a549a8 12eaf5c 5e5f9d1 37d54d8 bc3f6a6 eec60f5 5a549a8 2eea0c9 37d54d8 2eea0c9 12eaf5c 5e5f9d1 12eaf5c 8ea8c88 5a549a8 31243f4 6939dd2 31243f4 5557a0e 5a549a8 5557a0e 5a549a8 5557a0e 5a549a8 4021bf3 6939dd2 eec60f5 6939dd2 31243f4 7d65c66 eec60f5 3c4371f 7e4a06b eec60f5 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 2eea0c9 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 eec60f5 31243f4 e80aab9 31243f4 3c4371f eec60f5 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 eec60f5 31243f4 eec60f5 31243f4 eec60f5 31243f4 3c4371f 31243f4 2eea0c9 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 eec60f5 7d65c66 e80aab9 eec60f5 e80aab9 eec60f5 7d65c66 3c4371f eec60f5 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 eec60f5 7d65c66 eec60f5 7d65c66 eec60f5 7d65c66 eec60f5 3c4371f 31243f4 eec60f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import os
import gradio as gr
import requests
import pandas as pd
import time
import threading
import random
import litellm
from litellm import RateLimitError
# Enable debug mode to see detailed error information
litellm.verbose = True
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
VisitWebpageTool,
PythonInterpreterTool,
WikipediaSearchTool,
SpeechToTextTool,
LiteLLMModel,
)
from libs.questionHelper.file_tools import fetch_task_files
from libs.chess.chess_tools import analyze_chess_image, analyze_chess_position
from libs.transcription.transcription_tools import transcribe_audio
from libs.youtube.youtube_tools import analyze_youtube_video, get_youtube_video_info
from libs.youtube.youtube_web_fallback import (
search_youtube_video_info,
extract_youtube_video_id,
get_youtube_noembed_info,
)
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
FILES_AVAILABLE_PREFIX = "FILES_AVAILABLE: "
FILES_AVAILABLE_SUFFIX = "\n\n"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class TokenBucketRateLimiter:
"""Simple token-bucket rate limiter.
capacity: max tokens in bucket (burst size)
refill_rate: tokens added per second
"""
def __init__(self, capacity: int, refill_rate: float):
self.capacity = float(capacity)
self._tokens = float(capacity)
self.refill_rate = float(refill_rate)
self._lock = threading.Lock()
self._last = time.monotonic()
def acquire(self, tokens: float = 1.0):
with self._lock:
now = time.monotonic()
elapsed = now - self._last
# Refill
self._tokens = min(self.capacity, self._tokens + elapsed * self.refill_rate)
self._last = now
if self._tokens >= tokens:
self._tokens -= tokens
return 0.0
# Need to wait for enough tokens
required = tokens - self._tokens
wait_time = required / self.refill_rate
# consume what will be available after waiting
self._tokens = 0.0
return wait_time
class RateLimitedModel:
"""Wraps a model-like callable and enforces a TokenBucketRateLimiter before each call with retry logic."""
def __init__(
self,
model_obj,
rpm: int = 8,
burst: int | None = None,
max_retries: int = 10,
base_delay: float = 30.0,
):
self._model = model_obj
self.max_retries = max_retries
self.base_delay = base_delay
# rpm -> tokens per minute
capacity = burst if burst is not None else max(1, rpm)
refill_rate = float(rpm) / 60.0
self._limiter = TokenBucketRateLimiter(
capacity=capacity, refill_rate=refill_rate
)
def _call_with_retry(self, func, *args, **kwargs):
"""Call a function with retry logic for rate limit errors."""
last_exception = None
for attempt in range(1, self.max_retries + 1):
try:
# Apply rate limiting before each attempt
wait = self._limiter.acquire(1.0)
if wait > 0:
jitter = random.uniform(0.0, 0.5)
total_wait = wait + jitter
print(
f"RateLimitedModel sleeping {total_wait:.2f}s to respect RPM limit"
)
time.sleep(total_wait)
print(f"Model call attempt {attempt} of {self.max_retries}")
result = func(*args, **kwargs)
print(f"Model call attempt {attempt} succeeded")
return result
except Exception as e:
last_exception = e
error_str = str(e).lower()
# Check if this is a rate limit error (various ways it might be reported)
is_rate_limit = (
isinstance(e, RateLimitError)
or "rate limit" in error_str
or "quota" in error_str
or "429" in error_str
or "resource_exhausted" in error_str
or "too many requests" in error_str
)
# Check if this is a 503 server overload error
is_server_overload = (
"503" in error_str
or "overloaded" in error_str
or "unavailable" in error_str
or "service unavailable" in error_str
or "internalservererror" in error_str
)
# Retry for both rate limit and server overload errors
if is_rate_limit or is_server_overload:
error_type = (
"Rate limit" if is_rate_limit else "Server overload (503)"
)
print(f"{error_type} error on attempt {attempt}: {e}")
if attempt < self.max_retries:
# Use exponential backoff for 503 errors, longer delays
if is_server_overload:
delay = min(
120, self.base_delay * (2**attempt)
) + random.uniform(0, 10)
else:
delay = self.base_delay + random.uniform(0, 5)
print(f"Waiting {delay:.1f}s before retry {attempt + 1}...")
time.sleep(delay)
continue
else:
# Non-retryable error
print(f"Non-retryable error on attempt {attempt}: {e}")
raise e
# All retries exhausted
print(f"All {self.max_retries} attempts failed. Raising last exception.")
raise last_exception
def __call__(self, *args, **kwargs):
return self._call_with_retry(self._model, *args, **kwargs)
def __getattr__(self, name: str):
"""Proxy attribute access to the underlying model.
For callable attributes (like `generate`) we wrap the call so the
token-bucket rate limiter and retry logic are applied consistently.
"""
# Avoid recursion
if name.startswith("_"):
raise AttributeError(name)
attr = getattr(self._model, name)
if callable(attr):
def wrapped(*args, **kwargs):
return self._call_with_retry(attr, *args, **kwargs)
# Preserve original metadata where possible
try:
wrapped.__name__ = getattr(attr, "__name__", wrapped.__name__)
except Exception:
pass
return wrapped
return attr
# Wrap the model with a rate-limiter and retry logic. Default RPM is reduced to 8
# but can be configured via the MODEL_RPM environment variable.
_configured_rpm = int(os.getenv("MODEL_RPM", "8"))
_configured_burst = None
_configured_max_retries = int(os.getenv("MODEL_MAX_RETRIES", "10"))
_configured_base_delay = float(os.getenv("MODEL_BASE_DELAY", "30.0"))
# You can switch models here if Gemini continues to have issues
# Alternative options:
# - "gemini/gemini-1.5-flash" (older but more stable)
# - "gemini/gemini-1.5-pro" (more expensive but more capacity)
# - "gpt-4o-mini" or "gpt-3.5-turbo" (OpenAI alternatives)
_model_id = os.getenv("MODEL_ID", "gemini/gemini-2.5-flash")
print(f"Using model: {_model_id}")
model = RateLimitedModel(
LiteLLMModel(model_id=_model_id, temperature=0.2),
rpm=_configured_rpm,
burst=_configured_burst,
max_retries=_configured_max_retries,
base_delay=_configured_base_delay,
)
class BasicAgent:
def __init__(self, name: str = "GGSAgent"):
self.name = name
self.code_agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
PythonInterpreterTool(),
WikipediaSearchTool(),
SpeechToTextTool(),
transcribe_audio,
analyze_youtube_video,
get_youtube_video_info,
search_youtube_video_info,
extract_youtube_video_id,
get_youtube_noembed_info,
analyze_chess_position,
analyze_chess_image,
],
model=model,
max_steps=25,
verbosity_level=1,
additional_authorized_imports=[
"json",
"math",
"pandas",
"yt_dlp",
"tempfile",
"os",
"torch",
"whisper",
"re",
"litellm",
"requests",
"time",
"threading",
"random",
"cv2",
"numpy",
"PIL",
"base64",
"io",
"pathlib",
"subprocess",
],
add_base_tools=True
)
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
print(f"Starting agent execution with model retry logic enabled...")
start_time = time.time()
try:
# The retry logic is now handled at the model level within RateLimitedModel
# so we can call the agent directly
response = self.code_agent(question)
duration = time.time() - start_time
print(f"Agent completed successfully in {duration:.1f}s")
print(f"Agent returning response: {response}")
return response
except Exception as e:
duration = time.time() - start_time
print(f"Error in code agent after {duration:.1f}s: {e}")
return f"AGENT ERROR: {e}"
CACHE_DIR = "cache/gaia_validation"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent_name = os.getenv("AGENT_NAME", "GGSAgent")
agent = BasicAgent(name=agent_name)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Fetch any associated files from GAIA validation (if present) and prepend a brief summary to the question
try:
try:
file_results = fetch_task_files(
task_id, dest_dir=CACHE_DIR, transcribe_mp3=False
)
except Exception as e:
print(f"Warning: failed to fetch files for {task_id}: {e}")
file_results = {}
# Build a compact file summary for the agent prompt
file_summaries = []
for ext, info in (file_results or {}).items():
status = info.get("status")
path = info.get("path")
if status == "ok" and path:
file_summaries.append(f"{ext}=OK@{path}")
else:
file_summaries.append(f"{ext}={status}")
files_note = (
""
if not file_summaries
else (
FILES_AVAILABLE_PREFIX
+ "; ".join(file_summaries)
+ FILES_AVAILABLE_SUFFIX
)
)
prompt_with_files = files_note + question_text
submitted_answer = agent(prompt_with_files)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {e}"
answers_payload.append(
{"task_id": task_id, "submitted_answer": error_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": error_answer,
}
)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"agent_name": getattr(agent, "name", "BasicAgent"),
"answers": answers_payload,
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
)
else:
print(
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
)
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|