|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import pandas as pd |
|
|
import time |
|
|
import threading |
|
|
import random |
|
|
import litellm |
|
|
from litellm import RateLimitError |
|
|
|
|
|
|
|
|
litellm.verbose = True |
|
|
from smolagents import ( |
|
|
CodeAgent, |
|
|
DuckDuckGoSearchTool, |
|
|
VisitWebpageTool, |
|
|
PythonInterpreterTool, |
|
|
WikipediaSearchTool, |
|
|
SpeechToTextTool, |
|
|
LiteLLMModel, |
|
|
) |
|
|
from libs.questionHelper.file_tools import fetch_task_files |
|
|
from libs.chess.chess_tools import analyze_chess_image, analyze_chess_position |
|
|
from libs.transcription.transcription_tools import transcribe_audio |
|
|
from libs.youtube.youtube_tools import analyze_youtube_video, get_youtube_video_info |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
FILES_AVAILABLE_PREFIX = "FILES_AVAILABLE: " |
|
|
FILES_AVAILABLE_SUFFIX = "\n\n" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TokenBucketRateLimiter: |
|
|
"""Simple token-bucket rate limiter. |
|
|
|
|
|
capacity: max tokens in bucket (burst size) |
|
|
refill_rate: tokens added per second |
|
|
""" |
|
|
|
|
|
def __init__(self, capacity: int, refill_rate: float): |
|
|
self.capacity = float(capacity) |
|
|
self._tokens = float(capacity) |
|
|
self.refill_rate = float(refill_rate) |
|
|
self._lock = threading.Lock() |
|
|
self._last = time.monotonic() |
|
|
|
|
|
def acquire(self, tokens: float = 1.0): |
|
|
with self._lock: |
|
|
now = time.monotonic() |
|
|
elapsed = now - self._last |
|
|
|
|
|
self._tokens = min(self.capacity, self._tokens + elapsed * self.refill_rate) |
|
|
self._last = now |
|
|
if self._tokens >= tokens: |
|
|
self._tokens -= tokens |
|
|
return 0.0 |
|
|
|
|
|
required = tokens - self._tokens |
|
|
wait_time = required / self.refill_rate |
|
|
|
|
|
self._tokens = 0.0 |
|
|
return wait_time |
|
|
|
|
|
|
|
|
class RateLimitedModel: |
|
|
"""Wraps a model-like callable and enforces a TokenBucketRateLimiter before each call with retry logic.""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model_obj, |
|
|
rpm: int = 8, |
|
|
burst: int | None = None, |
|
|
max_retries: int = 10, |
|
|
base_delay: float = 30.0, |
|
|
): |
|
|
self._model = model_obj |
|
|
self.max_retries = max_retries |
|
|
self.base_delay = base_delay |
|
|
|
|
|
capacity = burst if burst is not None else max(1, rpm) |
|
|
refill_rate = float(rpm) / 60.0 |
|
|
self._limiter = TokenBucketRateLimiter( |
|
|
capacity=capacity, refill_rate=refill_rate |
|
|
) |
|
|
|
|
|
def _call_with_retry(self, func, *args, **kwargs): |
|
|
"""Call a function with retry logic for rate limit errors.""" |
|
|
last_exception = None |
|
|
for attempt in range(1, self.max_retries + 1): |
|
|
try: |
|
|
|
|
|
wait = self._limiter.acquire(1.0) |
|
|
if wait > 0: |
|
|
jitter = random.uniform(0.0, 0.5) |
|
|
total_wait = wait + jitter |
|
|
print( |
|
|
f"RateLimitedModel sleeping {total_wait:.2f}s to respect RPM limit" |
|
|
) |
|
|
time.sleep(total_wait) |
|
|
|
|
|
print(f"Model call attempt {attempt} of {self.max_retries}") |
|
|
result = func(*args, **kwargs) |
|
|
print(f"Model call attempt {attempt} succeeded") |
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
last_exception = e |
|
|
error_str = str(e).lower() |
|
|
|
|
|
|
|
|
is_rate_limit = ( |
|
|
isinstance(e, RateLimitError) |
|
|
or "rate limit" in error_str |
|
|
or "quota" in error_str |
|
|
or "429" in error_str |
|
|
or "resource_exhausted" in error_str |
|
|
or "too many requests" in error_str |
|
|
) |
|
|
|
|
|
|
|
|
is_server_overload = ( |
|
|
"503" in error_str |
|
|
or "overloaded" in error_str |
|
|
or "unavailable" in error_str |
|
|
or "service unavailable" in error_str |
|
|
or "internalservererror" in error_str |
|
|
) |
|
|
|
|
|
|
|
|
if is_rate_limit or is_server_overload: |
|
|
error_type = ( |
|
|
"Rate limit" if is_rate_limit else "Server overload (503)" |
|
|
) |
|
|
print(f"{error_type} error on attempt {attempt}: {e}") |
|
|
if attempt < self.max_retries: |
|
|
|
|
|
if is_server_overload: |
|
|
delay = min( |
|
|
120, self.base_delay * (2**attempt) |
|
|
) + random.uniform(0, 10) |
|
|
else: |
|
|
delay = self.base_delay + random.uniform(0, 5) |
|
|
print(f"Waiting {delay:.1f}s before retry {attempt + 1}...") |
|
|
time.sleep(delay) |
|
|
continue |
|
|
else: |
|
|
|
|
|
print(f"Non-retryable error on attempt {attempt}: {e}") |
|
|
raise e |
|
|
|
|
|
|
|
|
print(f"All {self.max_retries} attempts failed. Raising last exception.") |
|
|
raise last_exception |
|
|
|
|
|
def __call__(self, *args, **kwargs): |
|
|
return self._call_with_retry(self._model, *args, **kwargs) |
|
|
|
|
|
def __getattr__(self, name: str): |
|
|
"""Proxy attribute access to the underlying model. |
|
|
|
|
|
For callable attributes (like `generate`) we wrap the call so the |
|
|
token-bucket rate limiter and retry logic are applied consistently. |
|
|
""" |
|
|
|
|
|
if name.startswith("_"): |
|
|
raise AttributeError(name) |
|
|
|
|
|
attr = getattr(self._model, name) |
|
|
|
|
|
if callable(attr): |
|
|
|
|
|
def wrapped(*args, **kwargs): |
|
|
return self._call_with_retry(attr, *args, **kwargs) |
|
|
|
|
|
|
|
|
try: |
|
|
wrapped.__name__ = getattr(attr, "__name__", wrapped.__name__) |
|
|
except Exception: |
|
|
pass |
|
|
return wrapped |
|
|
|
|
|
return attr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_configured_rpm = int(os.getenv("MODEL_RPM", "8")) |
|
|
_configured_burst = None |
|
|
_configured_max_retries = int(os.getenv("MODEL_MAX_RETRIES", "10")) |
|
|
_configured_base_delay = float(os.getenv("MODEL_BASE_DELAY", "30.0")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_model_id = os.getenv("MODEL_ID", "gemini/gemini-2.5-flash") |
|
|
print(f"Using model: {_model_id}") |
|
|
|
|
|
model = RateLimitedModel( |
|
|
LiteLLMModel(model_id=_model_id, temperature=0.2), |
|
|
rpm=_configured_rpm, |
|
|
burst=_configured_burst, |
|
|
max_retries=_configured_max_retries, |
|
|
base_delay=_configured_base_delay, |
|
|
) |
|
|
|
|
|
|
|
|
class BasicAgent: |
|
|
def __init__(self, name: str = "GGSAgent"): |
|
|
self.name = name |
|
|
self.code_agent = CodeAgent( |
|
|
tools=[ |
|
|
DuckDuckGoSearchTool(), |
|
|
VisitWebpageTool(), |
|
|
PythonInterpreterTool(), |
|
|
WikipediaSearchTool(), |
|
|
SpeechToTextTool(), |
|
|
transcribe_audio, |
|
|
analyze_youtube_video, |
|
|
get_youtube_video_info, |
|
|
analyze_chess_position, |
|
|
analyze_chess_image, |
|
|
], |
|
|
model=model, |
|
|
max_steps=20, |
|
|
verbosity_level=1, |
|
|
additional_authorized_imports=[ |
|
|
"json", |
|
|
"math", |
|
|
"pandas", |
|
|
"yt_dlp", |
|
|
"tempfile", |
|
|
"os", |
|
|
"torch", |
|
|
"whisper", |
|
|
"re", |
|
|
"litellm", |
|
|
"requests", |
|
|
"time", |
|
|
"threading", |
|
|
"random", |
|
|
"cv2", |
|
|
"numpy", |
|
|
"PIL", |
|
|
"base64", |
|
|
"io", |
|
|
"pathlib", |
|
|
"subprocess", |
|
|
], |
|
|
add_base_tools=True, |
|
|
) |
|
|
print("BasicAgent initialized.") |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
print(f"Starting agent execution with model retry logic enabled...") |
|
|
|
|
|
start_time = time.time() |
|
|
try: |
|
|
|
|
|
|
|
|
response = self.code_agent(question) |
|
|
|
|
|
duration = time.time() - start_time |
|
|
print(f"Agent completed successfully in {duration:.1f}s") |
|
|
print(f"Agent returning response: {response}") |
|
|
return response |
|
|
except Exception as e: |
|
|
duration = time.time() - start_time |
|
|
print(f"Error in code agent after {duration:.1f}s: {e}") |
|
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
|
|
|
CACHE_DIR = "cache/gaia_validation" |
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
|
""" |
|
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
|
and displays the results. |
|
|
""" |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
|
|
if profile: |
|
|
username = f"{profile.username}" |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
print("User not logged in.") |
|
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
api_url = DEFAULT_API_URL |
|
|
questions_url = f"{api_url}/questions" |
|
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
|
|
|
try: |
|
|
agent_name = os.getenv("AGENT_NAME", "GGSAgent") |
|
|
agent = BasicAgent(name=agent_name) |
|
|
except Exception as e: |
|
|
print(f"Error instantiating agent: {e}") |
|
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
print(agent_code) |
|
|
|
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
|
try: |
|
|
response = requests.get(questions_url, timeout=15) |
|
|
response.raise_for_status() |
|
|
questions_data = response.json() |
|
|
if not questions_data: |
|
|
print("Fetched questions list is empty.") |
|
|
return "Fetched questions list is empty or invalid format.", None |
|
|
print(f"Fetched {len(questions_data)} questions.") |
|
|
except requests.exceptions.RequestException as e: |
|
|
print(f"Error fetching questions: {e}") |
|
|
return f"Error fetching questions: {e}", None |
|
|
except requests.exceptions.JSONDecodeError as e: |
|
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
|
print(f"Response text: {response.text[:500]}") |
|
|
return f"Error decoding server response for questions: {e}", None |
|
|
except Exception as e: |
|
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
print(f"Running agent on {len(questions_data)} questions...") |
|
|
for item in questions_data: |
|
|
task_id = item.get("task_id") |
|
|
question_text = item.get("question") |
|
|
if not task_id or question_text is None: |
|
|
print(f"Skipping item with missing task_id or question: {item}") |
|
|
continue |
|
|
|
|
|
try: |
|
|
try: |
|
|
file_results = fetch_task_files( |
|
|
task_id, dest_dir=CACHE_DIR, transcribe_mp3=False |
|
|
) |
|
|
except Exception as e: |
|
|
print(f"Warning: failed to fetch files for {task_id}: {e}") |
|
|
file_results = {} |
|
|
|
|
|
|
|
|
file_summaries = [] |
|
|
for ext, info in (file_results or {}).items(): |
|
|
status = info.get("status") |
|
|
path = info.get("path") |
|
|
if status == "ok" and path: |
|
|
file_summaries.append(f"{ext}=OK@{path}") |
|
|
else: |
|
|
file_summaries.append(f"{ext}={status}") |
|
|
|
|
|
files_note = ( |
|
|
"" |
|
|
if not file_summaries |
|
|
else ( |
|
|
FILES_AVAILABLE_PREFIX |
|
|
+ "; ".join(file_summaries) |
|
|
+ FILES_AVAILABLE_SUFFIX |
|
|
) |
|
|
) |
|
|
|
|
|
prompt_with_files = files_note + question_text |
|
|
|
|
|
submitted_answer = agent(prompt_with_files) |
|
|
answers_payload.append( |
|
|
{"task_id": task_id, "submitted_answer": submitted_answer} |
|
|
) |
|
|
results_log.append( |
|
|
{ |
|
|
"Task ID": task_id, |
|
|
"Question": question_text, |
|
|
"Submitted Answer": submitted_answer, |
|
|
} |
|
|
) |
|
|
except Exception as e: |
|
|
print(f"Error running agent on task {task_id}: {e}") |
|
|
error_answer = f"AGENT ERROR: {e}" |
|
|
answers_payload.append( |
|
|
{"task_id": task_id, "submitted_answer": error_answer} |
|
|
) |
|
|
results_log.append( |
|
|
{ |
|
|
"Task ID": task_id, |
|
|
"Question": question_text, |
|
|
"Submitted Answer": error_answer, |
|
|
} |
|
|
) |
|
|
|
|
|
if not answers_payload: |
|
|
print("Agent did not produce any answers to submit.") |
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
submission_data = { |
|
|
"username": username.strip(), |
|
|
"agent_code": agent_code, |
|
|
"agent_name": getattr(agent, "name", "BasicAgent"), |
|
|
"answers": answers_payload, |
|
|
} |
|
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
|
print(status_update) |
|
|
|
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result_data = response.json() |
|
|
final_status = ( |
|
|
f"Submission Successful!\n" |
|
|
f"User: {result_data.get('username')}\n" |
|
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
|
) |
|
|
print("Submission successful.") |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return final_status, results_df |
|
|
except requests.exceptions.HTTPError as e: |
|
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
|
try: |
|
|
error_json = e.response.json() |
|
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
|
except requests.exceptions.JSONDecodeError: |
|
|
error_detail += f" Response: {e.response.text[:500]}" |
|
|
status_message = f"Submission Failed: {error_detail}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.Timeout: |
|
|
status_message = "Submission Failed: The request timed out." |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.RequestException as e: |
|
|
status_message = f"Submission Failed: Network error - {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except Exception as e: |
|
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
|
gr.Markdown( |
|
|
""" |
|
|
**Instructions:** |
|
|
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
|
|
--- |
|
|
**Disclaimers:** |
|
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.LoginButton() |
|
|
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
|
|
status_output = gr.Textbox( |
|
|
label="Run Status / Submission Result", lines=5, interactive=False |
|
|
) |
|
|
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("\n" + "-" * 30 + " App Starting " + "-" * 30) |
|
|
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
|
|
if space_host_startup: |
|
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
|
else: |
|
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
|
|
if space_id_startup: |
|
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
|
print( |
|
|
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" |
|
|
) |
|
|
else: |
|
|
print( |
|
|
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." |
|
|
) |
|
|
|
|
|
print("-" * (60 + len(" App Starting ")) + "\n") |
|
|
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
|
demo.launch(debug=True, share=False) |
|
|
|