Spaces:
Runtime error
Runtime error
Update
Browse files- .pre-commit-config.yaml +37 -0
- README.md +4 -1
- app.py +73 -114
- images/README.md +0 -1
- model.py +12 -16
- requirements.txt +1 -1
- style.css +8 -0
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
exclude: ^patch.*
|
| 2 |
+
repos:
|
| 3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 4 |
+
rev: v4.2.0
|
| 5 |
+
hooks:
|
| 6 |
+
- id: check-executables-have-shebangs
|
| 7 |
+
- id: check-json
|
| 8 |
+
- id: check-merge-conflict
|
| 9 |
+
- id: check-shebang-scripts-are-executable
|
| 10 |
+
- id: check-toml
|
| 11 |
+
- id: check-yaml
|
| 12 |
+
- id: double-quote-string-fixer
|
| 13 |
+
- id: end-of-file-fixer
|
| 14 |
+
- id: mixed-line-ending
|
| 15 |
+
args: ['--fix=lf']
|
| 16 |
+
- id: requirements-txt-fixer
|
| 17 |
+
- id: trailing-whitespace
|
| 18 |
+
- repo: https://github.com/myint/docformatter
|
| 19 |
+
rev: v1.4
|
| 20 |
+
hooks:
|
| 21 |
+
- id: docformatter
|
| 22 |
+
args: ['--in-place']
|
| 23 |
+
- repo: https://github.com/pycqa/isort
|
| 24 |
+
rev: 5.12.0
|
| 25 |
+
hooks:
|
| 26 |
+
- id: isort
|
| 27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
+
rev: v0.991
|
| 29 |
+
hooks:
|
| 30 |
+
- id: mypy
|
| 31 |
+
args: ['--ignore-missing-imports']
|
| 32 |
+
additional_dependencies: ['types-python-slugify']
|
| 33 |
+
- repo: https://github.com/google/yapf
|
| 34 |
+
rev: v0.32.0
|
| 35 |
+
hooks:
|
| 36 |
+
- id: yapf
|
| 37 |
+
args: ['--parallel', '--in-place']
|
README.md
CHANGED
|
@@ -4,9 +4,12 @@ emoji: ⚡
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.35.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
suggested_hardware: t4-small
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
| 14 |
+
|
| 15 |
+
https://arxiv.org/abs/2112.05142
|
app.py
CHANGED
|
@@ -2,24 +2,16 @@
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
-
import argparse
|
| 6 |
import pathlib
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
from model import Model
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
parser.add_argument('--device', type=str, default='cpu')
|
| 16 |
-
parser.add_argument('--theme', type=str)
|
| 17 |
-
parser.add_argument('--share', action='store_true')
|
| 18 |
-
parser.add_argument('--port', type=int)
|
| 19 |
-
parser.add_argument('--disable-queue',
|
| 20 |
-
dest='enable_queue',
|
| 21 |
-
action='store_false')
|
| 22 |
-
return parser.parse_args()
|
| 23 |
|
| 24 |
|
| 25 |
def load_hairstyle_list() -> list[str]:
|
|
@@ -40,106 +32,73 @@ def update_step2_components(choice: str) -> tuple[dict, dict]:
|
|
| 40 |
)
|
| 41 |
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
''
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.hairclip" alt="visitor badge"/></center>'
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
preprocess_button.click(fn=model.detect_and_align_face,
|
| 117 |
-
inputs=[input_image],
|
| 118 |
-
outputs=[aligned_face])
|
| 119 |
-
aligned_face.change(fn=model.reconstruct_face,
|
| 120 |
-
inputs=[aligned_face],
|
| 121 |
-
outputs=[reconstructed_face, latent])
|
| 122 |
-
editing_type.change(fn=update_step2_components,
|
| 123 |
-
inputs=[editing_type],
|
| 124 |
-
outputs=[hairstyle_index, color_description])
|
| 125 |
-
run_button.click(fn=model.generate,
|
| 126 |
-
inputs=[
|
| 127 |
-
editing_type,
|
| 128 |
-
hairstyle_index,
|
| 129 |
-
color_description,
|
| 130 |
-
latent,
|
| 131 |
-
],
|
| 132 |
-
outputs=[result])
|
| 133 |
-
example_images.click(fn=set_example_image,
|
| 134 |
-
inputs=example_images,
|
| 135 |
-
outputs=example_images.components)
|
| 136 |
-
|
| 137 |
-
demo.launch(
|
| 138 |
-
enable_queue=args.enable_queue,
|
| 139 |
-
server_port=args.port,
|
| 140 |
-
share=args.share,
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
if __name__ == '__main__':
|
| 145 |
-
main()
|
|
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 5 |
import pathlib
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from model import Model
|
| 10 |
|
| 11 |
+
DESCRIPTION = '''# [HairCLIP](https://github.com/wty-ustc/HairCLIP)
|
| 12 |
|
| 13 |
+
<center><img id="teaser" src="https://raw.githubusercontent.com/wty-ustc/HairCLIP/main/assets/teaser.png" alt="teaser"></center>
|
| 14 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def load_hairstyle_list() -> list[str]:
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
|
| 35 |
+
model = Model()
|
| 36 |
+
|
| 37 |
+
with gr.Blocks(css='style.css') as demo:
|
| 38 |
+
gr.Markdown(DESCRIPTION)
|
| 39 |
+
with gr.Box():
|
| 40 |
+
gr.Markdown('## Step 1')
|
| 41 |
+
with gr.Row():
|
| 42 |
+
with gr.Column():
|
| 43 |
+
with gr.Row():
|
| 44 |
+
input_image = gr.Image(label='Input Image',
|
| 45 |
+
type='filepath')
|
| 46 |
+
with gr.Row():
|
| 47 |
+
preprocess_button = gr.Button('Preprocess')
|
| 48 |
+
with gr.Column():
|
| 49 |
+
aligned_face = gr.Image(label='Aligned Face',
|
| 50 |
+
type='pil',
|
| 51 |
+
interactive=False)
|
| 52 |
+
with gr.Column():
|
| 53 |
+
reconstructed_face = gr.Image(label='Reconstructed Face',
|
| 54 |
+
type='numpy')
|
| 55 |
+
latent = gr.Variable()
|
| 56 |
+
|
| 57 |
+
with gr.Row():
|
| 58 |
+
paths = sorted(pathlib.Path('images').glob('*.jpg'))
|
| 59 |
+
gr.Examples(examples=[[path.as_posix()] for path in paths],
|
| 60 |
+
inputs=input_image)
|
| 61 |
+
|
| 62 |
+
with gr.Box():
|
| 63 |
+
gr.Markdown('## Step 2')
|
| 64 |
+
with gr.Row():
|
| 65 |
+
with gr.Column():
|
| 66 |
+
with gr.Row():
|
| 67 |
+
editing_type = gr.Radio(
|
| 68 |
+
label='Editing Type',
|
| 69 |
+
choices=['hairstyle', 'color', 'both'],
|
| 70 |
+
value='both',
|
| 71 |
+
type='value')
|
| 72 |
+
with gr.Row():
|
| 73 |
+
hairstyles = load_hairstyle_list()
|
| 74 |
+
hairstyle_index = gr.Dropdown(label='Hairstyle',
|
| 75 |
+
choices=hairstyles,
|
| 76 |
+
value='afro',
|
| 77 |
+
type='index')
|
| 78 |
+
with gr.Row():
|
| 79 |
+
color_description = gr.Textbox(label='Color', value='red')
|
| 80 |
+
with gr.Row():
|
| 81 |
+
run_button = gr.Button('Run')
|
| 82 |
+
|
| 83 |
+
with gr.Column():
|
| 84 |
+
result = gr.Image(label='Result')
|
| 85 |
+
|
| 86 |
+
preprocess_button.click(fn=model.detect_and_align_face,
|
| 87 |
+
inputs=input_image,
|
| 88 |
+
outputs=aligned_face)
|
| 89 |
+
aligned_face.change(fn=model.reconstruct_face,
|
| 90 |
+
inputs=aligned_face,
|
| 91 |
+
outputs=[reconstructed_face, latent])
|
| 92 |
+
editing_type.change(fn=update_step2_components,
|
| 93 |
+
inputs=editing_type,
|
| 94 |
+
outputs=[hairstyle_index, color_description])
|
| 95 |
+
run_button.click(fn=model.generate,
|
| 96 |
+
inputs=[
|
| 97 |
+
editing_type,
|
| 98 |
+
hairstyle_index,
|
| 99 |
+
color_description,
|
| 100 |
+
latent,
|
| 101 |
+
],
|
| 102 |
+
outputs=result)
|
| 103 |
+
|
| 104 |
+
demo.queue(max_size=10).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images/README.md
CHANGED
|
@@ -4,4 +4,3 @@ These images are freely-usable ones from [Unsplash](https://unsplash.com/).
|
|
| 4 |
- https://unsplash.com/photos/et_78QkMMQs
|
| 5 |
- https://unsplash.com/photos/ILip77SbmOE
|
| 6 |
- https://unsplash.com/photos/95UF6LXe-Lo
|
| 7 |
-
|
|
|
|
| 4 |
- https://unsplash.com/photos/et_78QkMMQs
|
| 5 |
- https://unsplash.com/photos/ILip77SbmOE
|
| 6 |
- https://unsplash.com/photos/95UF6LXe-Lo
|
|
|
model.py
CHANGED
|
@@ -15,7 +15,7 @@ import torch
|
|
| 15 |
import torch.nn as nn
|
| 16 |
import torchvision.transforms as T
|
| 17 |
|
| 18 |
-
if os.getenv('SYSTEM') == 'spaces':
|
| 19 |
with open('patch.e4e') as f:
|
| 20 |
subprocess.run('patch -p1'.split(), cwd='encoder4editing', stdin=f)
|
| 21 |
with open('patch.hairclip') as f:
|
|
@@ -37,12 +37,11 @@ sys.path.insert(0, mapper_dir.as_posix())
|
|
| 37 |
from mapper.datasets.latents_dataset_inference import LatentsDatasetInference
|
| 38 |
from mapper.hairclip_mapper import HairCLIPMapper
|
| 39 |
|
| 40 |
-
HF_TOKEN = os.environ['HF_TOKEN']
|
| 41 |
-
|
| 42 |
|
| 43 |
class Model:
|
| 44 |
-
def __init__(self
|
| 45 |
-
self.device = torch.device(
|
|
|
|
| 46 |
self.landmark_model = self._create_dlib_landmark_model()
|
| 47 |
self.e4e = self._load_e4e()
|
| 48 |
self.hairclip = self._load_hairclip()
|
|
@@ -51,15 +50,13 @@ class Model:
|
|
| 51 |
@staticmethod
|
| 52 |
def _create_dlib_landmark_model():
|
| 53 |
path = huggingface_hub.hf_hub_download(
|
| 54 |
-
'
|
| 55 |
-
'shape_predictor_68_face_landmarks.dat'
|
| 56 |
-
use_auth_token=HF_TOKEN)
|
| 57 |
return dlib.shape_predictor(path)
|
| 58 |
|
| 59 |
def _load_e4e(self) -> nn.Module:
|
| 60 |
-
ckpt_path = huggingface_hub.hf_hub_download('
|
| 61 |
-
'e4e_ffhq_encode.pt'
|
| 62 |
-
use_auth_token=HF_TOKEN)
|
| 63 |
ckpt = torch.load(ckpt_path, map_location='cpu')
|
| 64 |
opts = ckpt['opts']
|
| 65 |
opts['device'] = self.device.type
|
|
@@ -71,9 +68,8 @@ class Model:
|
|
| 71 |
return model
|
| 72 |
|
| 73 |
def _load_hairclip(self) -> nn.Module:
|
| 74 |
-
ckpt_path = huggingface_hub.hf_hub_download('
|
| 75 |
-
'hairclip.pt'
|
| 76 |
-
use_auth_token=HF_TOKEN)
|
| 77 |
ckpt = torch.load(ckpt_path, map_location='cpu')
|
| 78 |
opts = ckpt['opts']
|
| 79 |
opts['device'] = self.device.type
|
|
@@ -98,8 +94,8 @@ class Model:
|
|
| 98 |
])
|
| 99 |
return transform
|
| 100 |
|
| 101 |
-
def detect_and_align_face(self, image) -> PIL.Image.Image:
|
| 102 |
-
image = align_face(filepath=image
|
| 103 |
return image
|
| 104 |
|
| 105 |
@staticmethod
|
|
|
|
| 15 |
import torch.nn as nn
|
| 16 |
import torchvision.transforms as T
|
| 17 |
|
| 18 |
+
if os.getenv('SYSTEM') == 'spaces' and not torch.cuda.is_available():
|
| 19 |
with open('patch.e4e') as f:
|
| 20 |
subprocess.run('patch -p1'.split(), cwd='encoder4editing', stdin=f)
|
| 21 |
with open('patch.hairclip') as f:
|
|
|
|
| 37 |
from mapper.datasets.latents_dataset_inference import LatentsDatasetInference
|
| 38 |
from mapper.hairclip_mapper import HairCLIPMapper
|
| 39 |
|
|
|
|
|
|
|
| 40 |
|
| 41 |
class Model:
|
| 42 |
+
def __init__(self):
|
| 43 |
+
self.device = torch.device(
|
| 44 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 45 |
self.landmark_model = self._create_dlib_landmark_model()
|
| 46 |
self.e4e = self._load_e4e()
|
| 47 |
self.hairclip = self._load_hairclip()
|
|
|
|
| 50 |
@staticmethod
|
| 51 |
def _create_dlib_landmark_model():
|
| 52 |
path = huggingface_hub.hf_hub_download(
|
| 53 |
+
'public-data/dlib_face_landmark_model',
|
| 54 |
+
'shape_predictor_68_face_landmarks.dat')
|
|
|
|
| 55 |
return dlib.shape_predictor(path)
|
| 56 |
|
| 57 |
def _load_e4e(self) -> nn.Module:
|
| 58 |
+
ckpt_path = huggingface_hub.hf_hub_download('public-data/e4e',
|
| 59 |
+
'e4e_ffhq_encode.pt')
|
|
|
|
| 60 |
ckpt = torch.load(ckpt_path, map_location='cpu')
|
| 61 |
opts = ckpt['opts']
|
| 62 |
opts['device'] = self.device.type
|
|
|
|
| 68 |
return model
|
| 69 |
|
| 70 |
def _load_hairclip(self) -> nn.Module:
|
| 71 |
+
ckpt_path = huggingface_hub.hf_hub_download('public-data/HairCLIP',
|
| 72 |
+
'hairclip.pt')
|
|
|
|
| 73 |
ckpt = torch.load(ckpt_path, map_location='cpu')
|
| 74 |
opts = ckpt['opts']
|
| 75 |
opts['device'] = self.device.type
|
|
|
|
| 94 |
])
|
| 95 |
return transform
|
| 96 |
|
| 97 |
+
def detect_and_align_face(self, image: str) -> PIL.Image.Image:
|
| 98 |
+
image = align_face(filepath=image, predictor=self.landmark_model)
|
| 99 |
return image
|
| 100 |
|
| 101 |
@staticmethod
|
requirements.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
dlib==19.23.0
|
|
|
|
| 2 |
numpy==1.22.3
|
| 3 |
opencv-python-headless==4.5.5.64
|
| 4 |
Pillow==9.1.0
|
| 5 |
scipy==1.8.0
|
| 6 |
torch==1.11.0
|
| 7 |
torchvision==0.12.0
|
| 8 |
-
git+https://github.com/openai/CLIP.git
|
|
|
|
| 1 |
dlib==19.23.0
|
| 2 |
+
git+https://github.com/openai/CLIP.git
|
| 3 |
numpy==1.22.3
|
| 4 |
opencv-python-headless==4.5.5.64
|
| 5 |
Pillow==9.1.0
|
| 6 |
scipy==1.8.0
|
| 7 |
torch==1.11.0
|
| 8 |
torchvision==0.12.0
|
|
|
style.css
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|
| 4 |
+
|
| 5 |
+
img#teaser {
|
| 6 |
+
max-width: 1000px;
|
| 7 |
+
max-height: 600px;
|
| 8 |
+
}
|