Spaces:
Sleeping
Sleeping
Upload 20 files
Browse files- ADVANCED_RAG_GUIDE.md +256 -0
- MULTIMODAL_PDF_GUIDE.md +525 -0
- PDF_RAG_GUIDE.md +390 -0
- QUICK_START_PDF.md +310 -0
- SUMMARY.md +429 -0
- advanced_rag.py +301 -0
- app.py +47 -0
- batch_index_pdfs.py +151 -0
- chatbot_guide_template.md +369 -0
- chatbot_rag.py +351 -0
- chatbot_rag_api.py +468 -0
- embedding_service.py +173 -0
- main.py +1285 -0
- multimodal_pdf_parser.py +390 -0
- pdf_parser.py +371 -0
- qdrant_service.py +447 -0
- requirements.txt +34 -0
- test_advanced_features.py +260 -0
- verify_dependencies.py +102 -0
ADVANCED_RAG_GUIDE.md
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Advanced RAG Chatbot - User Guide
|
| 2 |
+
|
| 3 |
+
## What's New?
|
| 4 |
+
|
| 5 |
+
### 1. Multiple Images & Texts Support in `/index` API
|
| 6 |
+
|
| 7 |
+
The `/index` endpoint now supports indexing multiple texts and images in a single request (max 10 each).
|
| 8 |
+
|
| 9 |
+
**Before:**
|
| 10 |
+
```python
|
| 11 |
+
# Old: Only 1 text and 1 image
|
| 12 |
+
data = {
|
| 13 |
+
'id': 'doc1',
|
| 14 |
+
'text': 'Single text',
|
| 15 |
+
}
|
| 16 |
+
files = {'image': open('image.jpg', 'rb')}
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
**After:**
|
| 20 |
+
```python
|
| 21 |
+
# New: Multiple texts and images (max 10 each)
|
| 22 |
+
data = {
|
| 23 |
+
'id': 'doc1',
|
| 24 |
+
'texts': ['Text 1', 'Text 2', 'Text 3'], # Up to 10
|
| 25 |
+
}
|
| 26 |
+
files = [
|
| 27 |
+
('images', open('image1.jpg', 'rb')),
|
| 28 |
+
('images', open('image2.jpg', 'rb')),
|
| 29 |
+
('images', open('image3.jpg', 'rb')), # Up to 10
|
| 30 |
+
]
|
| 31 |
+
response = requests.post('http://localhost:8000/index', data=data, files=files)
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
**Example with cURL:**
|
| 35 |
+
```bash
|
| 36 |
+
curl -X POST "http://localhost:8000/index" \
|
| 37 |
+
-F "id=event123" \
|
| 38 |
+
-F "texts=Sự kiện âm nhạc tại Hà Nội" \
|
| 39 |
+
-F "texts=Diễn ra vào ngày 20/10/2025" \
|
| 40 |
+
-F "texts=Địa điểm: Trung tâm Hội nghị Quốc gia" \
|
| 41 |
+
-F "[email protected]" \
|
| 42 |
+
-F "[email protected]" \
|
| 43 |
+
-F "[email protected]"
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
### 2. Advanced RAG Pipeline in `/chat` API
|
| 47 |
+
|
| 48 |
+
The chat endpoint now uses modern RAG techniques for better response quality:
|
| 49 |
+
|
| 50 |
+
#### Key Improvements:
|
| 51 |
+
|
| 52 |
+
1. **Query Expansion**: Automatically expands your question with variations
|
| 53 |
+
2. **Multi-Query Retrieval**: Searches with multiple query variants
|
| 54 |
+
3. **Reranking**: Re-scores results for better relevance
|
| 55 |
+
4. **Contextual Compression**: Keeps only the most relevant parts
|
| 56 |
+
5. **Better Prompt Engineering**: Optimized prompts for LLM
|
| 57 |
+
|
| 58 |
+
#### How to Use:
|
| 59 |
+
|
| 60 |
+
**Basic Usage (Auto-enabled):**
|
| 61 |
+
```python
|
| 62 |
+
import requests
|
| 63 |
+
|
| 64 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 65 |
+
'message': 'Dao có nguy hiểm không?',
|
| 66 |
+
'use_rag': True,
|
| 67 |
+
'use_advanced_rag': True, # Default: True
|
| 68 |
+
'hf_token': 'hf_xxxxx'
|
| 69 |
+
})
|
| 70 |
+
|
| 71 |
+
result = response.json()
|
| 72 |
+
print("Response:", result['response'])
|
| 73 |
+
print("RAG Stats:", result['rag_stats']) # See pipeline statistics
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
**Advanced Configuration:**
|
| 77 |
+
```python
|
| 78 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 79 |
+
'message': 'Làm sao để tạo event mới?',
|
| 80 |
+
'use_rag': True,
|
| 81 |
+
'use_advanced_rag': True,
|
| 82 |
+
|
| 83 |
+
# RAG Pipeline Options
|
| 84 |
+
'use_query_expansion': True, # Expand query with variations
|
| 85 |
+
'use_reranking': True, # Rerank results
|
| 86 |
+
'use_compression': True, # Compress context
|
| 87 |
+
'score_threshold': 0.5, # Min relevance score (0-1)
|
| 88 |
+
'top_k': 5, # Number of documents to retrieve
|
| 89 |
+
|
| 90 |
+
# LLM Options
|
| 91 |
+
'max_tokens': 512,
|
| 92 |
+
'temperature': 0.7,
|
| 93 |
+
'hf_token': 'hf_xxxxx'
|
| 94 |
+
})
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
**Disable Advanced RAG (Use Basic):**
|
| 98 |
+
```python
|
| 99 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 100 |
+
'message': 'Your question',
|
| 101 |
+
'use_rag': True,
|
| 102 |
+
'use_advanced_rag': False, # Use basic RAG
|
| 103 |
+
})
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
## API Changes Summary
|
| 107 |
+
|
| 108 |
+
### `/index` Endpoint
|
| 109 |
+
|
| 110 |
+
**Old Parameters:**
|
| 111 |
+
- `id`: str (required)
|
| 112 |
+
- `text`: str (required)
|
| 113 |
+
- `image`: UploadFile (optional)
|
| 114 |
+
|
| 115 |
+
**New Parameters:**
|
| 116 |
+
- `id`: str (required)
|
| 117 |
+
- `texts`: List[str] (optional, max 10)
|
| 118 |
+
- `images`: List[UploadFile] (optional, max 10)
|
| 119 |
+
|
| 120 |
+
**Response:**
|
| 121 |
+
```json
|
| 122 |
+
{
|
| 123 |
+
"success": true,
|
| 124 |
+
"id": "doc123",
|
| 125 |
+
"message": "Đã index thành công document doc123 với 3 texts và 2 images"
|
| 126 |
+
}
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### `/chat` Endpoint
|
| 130 |
+
|
| 131 |
+
**New Parameters:**
|
| 132 |
+
- `use_advanced_rag`: bool (default: True) - Enable advanced RAG
|
| 133 |
+
- `use_query_expansion`: bool (default: True) - Expand query
|
| 134 |
+
- `use_reranking`: bool (default: True) - Rerank results
|
| 135 |
+
- `use_compression`: bool (default: True) - Compress context
|
| 136 |
+
- `score_threshold`: float (default: 0.5) - Min relevance score
|
| 137 |
+
|
| 138 |
+
**Response (New):**
|
| 139 |
+
```json
|
| 140 |
+
{
|
| 141 |
+
"response": "AI generated answer...",
|
| 142 |
+
"context_used": [...],
|
| 143 |
+
"timestamp": "2025-10-29T...",
|
| 144 |
+
"rag_stats": {
|
| 145 |
+
"original_query": "Your question",
|
| 146 |
+
"expanded_queries": ["Query variant 1", "Query variant 2"],
|
| 147 |
+
"initial_results": 10,
|
| 148 |
+
"after_rerank": 5,
|
| 149 |
+
"after_compression": 5
|
| 150 |
+
}
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Complete Examples
|
| 155 |
+
|
| 156 |
+
### Example 1: Index Multiple Social Media Posts
|
| 157 |
+
|
| 158 |
+
```python
|
| 159 |
+
import requests
|
| 160 |
+
|
| 161 |
+
# Index a social media event with multiple posts and images
|
| 162 |
+
data = {
|
| 163 |
+
'id': 'event_festival_2025',
|
| 164 |
+
'texts': [
|
| 165 |
+
'Festival âm nhạc quốc tế Hà Nội 2025',
|
| 166 |
+
'Ngày 15-17 tháng 11 năm 2025',
|
| 167 |
+
'Địa điểm: Công viên Thống Nhất',
|
| 168 |
+
'Line-up: Sơn Tùng MTP, Đen Vâu, Hoàng Thùy Linh',
|
| 169 |
+
'Giá vé từ 500.000đ - 2.000.000đ'
|
| 170 |
+
]
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
files = [
|
| 174 |
+
('images', open('poster_festival.jpg', 'rb')),
|
| 175 |
+
('images', open('lineup.jpg', 'rb')),
|
| 176 |
+
('images', open('venue_map.jpg', 'rb'))
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
response = requests.post('http://localhost:8000/index', data=data, files=files)
|
| 180 |
+
print(response.json())
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
### Example 2: Advanced RAG Chat
|
| 184 |
+
|
| 185 |
+
```python
|
| 186 |
+
import requests
|
| 187 |
+
|
| 188 |
+
# Chat with advanced RAG
|
| 189 |
+
chat_response = requests.post('http://localhost:8000/chat', json={
|
| 190 |
+
'message': 'Festival âm nhạc Hà Nội diễn ra khi nào và ở đâu?',
|
| 191 |
+
'use_rag': True,
|
| 192 |
+
'use_advanced_rag': True,
|
| 193 |
+
'top_k': 3,
|
| 194 |
+
'score_threshold': 0.6,
|
| 195 |
+
'hf_token': 'your_hf_token_here'
|
| 196 |
+
})
|
| 197 |
+
|
| 198 |
+
result = chat_response.json()
|
| 199 |
+
print("Answer:", result['response'])
|
| 200 |
+
print("\nRetrieved Context:")
|
| 201 |
+
for ctx in result['context_used']:
|
| 202 |
+
print(f"- [{ctx['id']}] Confidence: {ctx['confidence']:.2%}")
|
| 203 |
+
|
| 204 |
+
print("\nRAG Pipeline Stats:")
|
| 205 |
+
print(f"- Original query: {result['rag_stats']['original_query']}")
|
| 206 |
+
print(f"- Query variants: {result['rag_stats']['expanded_queries']}")
|
| 207 |
+
print(f"- Documents retrieved: {result['rag_stats']['initial_results']}")
|
| 208 |
+
print(f"- After reranking: {result['rag_stats']['after_rerank']}")
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
## Performance Comparison
|
| 212 |
+
|
| 213 |
+
| Feature | Basic RAG | Advanced RAG |
|
| 214 |
+
|---------|-----------|--------------|
|
| 215 |
+
| Query Understanding | Single query | Multiple query variants |
|
| 216 |
+
| Retrieval Method | Direct vector search | Multi-query + hybrid |
|
| 217 |
+
| Result Ranking | Score from DB | Reranked with semantic similarity |
|
| 218 |
+
| Context Quality | Full text | Compressed, relevant parts only |
|
| 219 |
+
| Response Accuracy | Good | Better |
|
| 220 |
+
| Response Time | Faster | Slightly slower but better quality |
|
| 221 |
+
|
| 222 |
+
## When to Use What?
|
| 223 |
+
|
| 224 |
+
**Use Basic RAG when:**
|
| 225 |
+
- You need fast response time
|
| 226 |
+
- Queries are straightforward
|
| 227 |
+
- Context is already well-structured
|
| 228 |
+
|
| 229 |
+
**Use Advanced RAG when:**
|
| 230 |
+
- You need higher accuracy
|
| 231 |
+
- Queries are complex or ambiguous
|
| 232 |
+
- Context documents are long
|
| 233 |
+
- You want better relevance
|
| 234 |
+
|
| 235 |
+
## Troubleshooting
|
| 236 |
+
|
| 237 |
+
### Error: "Tối đa 10 texts"
|
| 238 |
+
You're sending more than 10 texts. Reduce to max 10.
|
| 239 |
+
|
| 240 |
+
### Error: "Tối đa 10 images"
|
| 241 |
+
You're sending more than 10 images. Reduce to max 10.
|
| 242 |
+
|
| 243 |
+
### RAG stats show 0 results
|
| 244 |
+
Your `score_threshold` might be too high. Try lowering it (e.g., 0.3-0.5).
|
| 245 |
+
|
| 246 |
+
## Next Steps
|
| 247 |
+
|
| 248 |
+
To further improve RAG, consider:
|
| 249 |
+
|
| 250 |
+
1. **Add BM25 Hybrid Search**: Combine dense + sparse retrieval
|
| 251 |
+
2. **Use Cross-Encoder for Reranking**: Better than embedding similarity
|
| 252 |
+
3. **Implement Query Decomposition**: Break complex queries into sub-queries
|
| 253 |
+
4. **Add Citation/Source Tracking**: Show which document each fact comes from
|
| 254 |
+
5. **Integrate RAG-Anything**: For advanced multimodal document processing
|
| 255 |
+
|
| 256 |
+
For RAG-Anything integration (more complex), see: https://github.com/HKUDS/RAG-Anything
|
MULTIMODAL_PDF_GUIDE.md
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Multimodal PDF Guide - PDFs với Text + Hình Ảnh
|
| 2 |
+
|
| 3 |
+
## Tổng Quan
|
| 4 |
+
|
| 5 |
+
Hệ thống giờ hỗ trợ **Multimodal PDF** - PDFs có:
|
| 6 |
+
- ✅ Text hướng dẫn
|
| 7 |
+
- ✅ Image URLs (links đến hình ảnh)
|
| 8 |
+
- ✅ Markdown images: ``
|
| 9 |
+
- ✅ HTML images: `<img src="url">`
|
| 10 |
+
|
| 11 |
+
**Perfect cho**: User guides với screenshots, tutorials với diagrams, documentation với visual aids.
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## Tại Sao Cần Multimodal?
|
| 16 |
+
|
| 17 |
+
### Vấn Đề Với PDF Thông Thường
|
| 18 |
+
|
| 19 |
+
PDF hướng dẫn thường có:
|
| 20 |
+
```
|
| 21 |
+
Bước 1: Mở trang chủ
|
| 22 |
+
[Xem hình ảnh: https://example.com/homepage.png]
|
| 23 |
+
|
| 24 |
+
Bước 2: Click vào "Tạo mới"
|
| 25 |
+

|
| 26 |
+
|
| 27 |
+
Bước 3: Điền thông tin
|
| 28 |
+
<img src="https://example.com/form.png" alt="Form" />
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**PDF parser cũ** chỉ extract text → **MẤT hết image URLs** → Chatbot không biết hình ảnh nào liên quan!
|
| 32 |
+
|
| 33 |
+
**Multimodal PDF parser mới**:
|
| 34 |
+
- ✓ Extract text
|
| 35 |
+
- ✓ Detect tất cả image URLs
|
| 36 |
+
- ✓ Link images với text chunks tương ứng
|
| 37 |
+
- ✓ Store URLs trong metadata
|
| 38 |
+
- ✓ Return images cùng text khi chat
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## So Sánh: PDF Thường vs Multimodal PDF
|
| 43 |
+
|
| 44 |
+
| Feature | PDF Thường (`/upload-pdf`) | Multimodal PDF (`/upload-pdf-multimodal`) |
|
| 45 |
+
|---------|---------------------------|-------------------------------------------|
|
| 46 |
+
| Extract text | ✓ | ✓ |
|
| 47 |
+
| Detect image URLs | ✗ | ✓ |
|
| 48 |
+
| Link images to chunks | ✗ | ✓ |
|
| 49 |
+
| Return images in chat | ✗ | ✓ |
|
| 50 |
+
| URL formats supported | ✗ | http://, https://, markdown, HTML |
|
| 51 |
+
| Use case | Simple text documents | User guides, tutorials, docs with images |
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
## Cách Sử Dụng
|
| 56 |
+
|
| 57 |
+
### 1. Upload Multimodal PDF
|
| 58 |
+
|
| 59 |
+
**Endpoint:** `POST /upload-pdf-multimodal`
|
| 60 |
+
|
| 61 |
+
**Curl:**
|
| 62 |
+
```bash
|
| 63 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
|
| 64 |
+
-F "file=@user_guide_with_images.pdf" \
|
| 65 |
+
-F "title=Hướng dẫn sử dụng hệ thống" \
|
| 66 |
+
-F "description=User guide with screenshots" \
|
| 67 |
+
-F "category=user_guide"
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
**Python:**
|
| 71 |
+
```python
|
| 72 |
+
import requests
|
| 73 |
+
|
| 74 |
+
with open('user_guide_with_images.pdf', 'rb') as f:
|
| 75 |
+
response = requests.post(
|
| 76 |
+
'http://localhost:8000/upload-pdf-multimodal',
|
| 77 |
+
files={'file': f},
|
| 78 |
+
data={
|
| 79 |
+
'title': 'User Guide with Screenshots',
|
| 80 |
+
'category': 'user_guide'
|
| 81 |
+
}
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
result = response.json()
|
| 85 |
+
print(f"Indexed: {result['chunks_indexed']} chunks")
|
| 86 |
+
print(f"Images found: {result['message']}")
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
**Response:**
|
| 90 |
+
```json
|
| 91 |
+
{
|
| 92 |
+
"success": true,
|
| 93 |
+
"document_id": "pdf_multimodal_20251029_150000",
|
| 94 |
+
"filename": "user_guide_with_images.pdf",
|
| 95 |
+
"chunks_indexed": 25,
|
| 96 |
+
"message": "PDF 'user_guide_with_images.pdf' indexed successfully with 25 chunks and 15 images"
|
| 97 |
+
}
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### 2. Chat Với Multimodal Context
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
import requests
|
| 104 |
+
|
| 105 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 106 |
+
'message': 'Làm sao để tạo event mới?',
|
| 107 |
+
'use_rag': True,
|
| 108 |
+
'use_advanced_rag': True,
|
| 109 |
+
'top_k': 3,
|
| 110 |
+
'hf_token': 'your_token'
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
result = response.json()
|
| 114 |
+
|
| 115 |
+
# Response text
|
| 116 |
+
print("Answer:", result['response'])
|
| 117 |
+
|
| 118 |
+
# Retrieved context with images
|
| 119 |
+
for ctx in result['context_used']:
|
| 120 |
+
print(f"\n--- Source: Page {ctx['metadata']['page']} ---")
|
| 121 |
+
print(f"Text: {ctx['metadata']['text'][:200]}...")
|
| 122 |
+
|
| 123 |
+
# Check if this chunk has images
|
| 124 |
+
if ctx['metadata'].get('has_images'):
|
| 125 |
+
print(f"Images ({ctx['metadata']['num_images']}):")
|
| 126 |
+
for img_url in ctx['metadata'].get('image_urls', []):
|
| 127 |
+
print(f" - {img_url}")
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
**Example Output:**
|
| 131 |
+
```
|
| 132 |
+
Answer: Để tạo event mới, bạn thực hiện các bước sau:
|
| 133 |
+
1. Mở trang chủ và click vào nút "Tạo Event" (xem hình minh họa)
|
| 134 |
+
2. Điền thông tin event...
|
| 135 |
+
|
| 136 |
+
--- Source: Page 5 ---
|
| 137 |
+
Text: Bước 1: Mở trang chủ và click vào nút "Tạo Event"...
|
| 138 |
+
Images (2):
|
| 139 |
+
- https://example.com/homepage.png
|
| 140 |
+
- https://example.com/create-button.png
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
|
| 145 |
+
## Cách Chuẩn Bị PDF
|
| 146 |
+
|
| 147 |
+
### Format Hỗ Trợ
|
| 148 |
+
|
| 149 |
+
Multimodal parser detect các format sau:
|
| 150 |
+
|
| 151 |
+
1. **Standard URLs:**
|
| 152 |
+
```
|
| 153 |
+
Xem hình: https://example.com/image.png
|
| 154 |
+
Screenshot: http://cdn.example.com/screenshot.jpg
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
2. **Markdown Images:**
|
| 158 |
+
```markdown
|
| 159 |
+

|
| 160 |
+

|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
3. **HTML Images:**
|
| 164 |
+
```html
|
| 165 |
+
<img src="https://example.com/form.png" alt="Form" />
|
| 166 |
+
<img src="http://example.com/result.jpg">
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
4. **Image Extensions:**
|
| 170 |
+
```
|
| 171 |
+
https://example.com/pic.jpg
|
| 172 |
+
https://example.com/chart.png
|
| 173 |
+
https://example.com/diagram.svg
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
### Best Practices
|
| 177 |
+
|
| 178 |
+
#### ✓ Tốt
|
| 179 |
+
|
| 180 |
+
**PDF Content Example:**
|
| 181 |
+
```
|
| 182 |
+
# Hướng Dẫn Tạo Event
|
| 183 |
+
|
| 184 |
+
## Bước 1: Mở Trang Chủ
|
| 185 |
+
|
| 186 |
+
Truy cập vào trang chủ hệ thống tại homepage.
|
| 187 |
+
|
| 188 |
+

|
| 189 |
+
|
| 190 |
+
Bạn sẽ thấy màn hình chính với menu bên trái.
|
| 191 |
+
|
| 192 |
+
## Bước 2: Click "Tạo Event"
|
| 193 |
+
|
| 194 |
+
Tìm và click vào nút "Tạo Event" ở góc trên phải.
|
| 195 |
+
|
| 196 |
+

|
| 197 |
+
|
| 198 |
+
## Bước 3: Điền Thông Tin
|
| 199 |
+
|
| 200 |
+
Điền các thông tin sau vào form:
|
| 201 |
+
- Tên event
|
| 202 |
+
- Ngày giờ
|
| 203 |
+
- Địa điểm
|
| 204 |
+
|
| 205 |
+
Xem mẫu form: https://docs.example.com/images/event-form.png
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
**Why good:**
|
| 209 |
+
- Có cấu trúc rõ ràng (headings)
|
| 210 |
+
- Mỗi bước có text + hình ảnh
|
| 211 |
+
- URLs rõ ràng, dễ detect
|
| 212 |
+
- Context gắn chặt với hình
|
| 213 |
+
|
| 214 |
+
#### ✗ Tránh
|
| 215 |
+
|
| 216 |
+
```
|
| 217 |
+
Xem các hình dưới đây [1] [2] [3]
|
| 218 |
+
|
| 219 |
+
[Các hình ảnh ở cuối tài liệu]
|
| 220 |
+
|
| 221 |
+
...
|
| 222 |
+
|
| 223 |
+
[1] homepage.png
|
| 224 |
+
[2] button.png
|
| 225 |
+
[3] form.png
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
**Why bad:**
|
| 229 |
+
- Images references không có URLs
|
| 230 |
+
- Images tách biệt khỏi context
|
| 231 |
+
- Không có full URLs (chỉ filenames)
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
## Ví Dụ Thực Tế
|
| 236 |
+
|
| 237 |
+
### Tạo PDF Hướng Dẫn Multimodal
|
| 238 |
+
|
| 239 |
+
**File: `chatbot_guide_with_images.md`**
|
| 240 |
+
|
| 241 |
+
```markdown
|
| 242 |
+
# Hướng Dẫn Sử Dụng ChatbotRAG
|
| 243 |
+
|
| 244 |
+
## 1. Upload PDF
|
| 245 |
+
|
| 246 |
+
### Bước 1: Chuẩn bị file PDF
|
| 247 |
+
|
| 248 |
+
Đảm bảo file PDF của bạn đã sẵn sàng.
|
| 249 |
+
|
| 250 |
+

|
| 251 |
+
|
| 252 |
+
### Bước 2: Sử dụng cURL hoặc Python
|
| 253 |
+
|
| 254 |
+
**Với cURL:**
|
| 255 |
+
|
| 256 |
+
\`\`\`bash
|
| 257 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \\
|
| 258 |
+
-F "file=@your_file.pdf"
|
| 259 |
+
\`\`\`
|
| 260 |
+
|
| 261 |
+

|
| 262 |
+
|
| 263 |
+
**Với Python:**
|
| 264 |
+
|
| 265 |
+
\`\`\`python
|
| 266 |
+
import requests
|
| 267 |
+
# Upload code here
|
| 268 |
+
\`\`\`
|
| 269 |
+
|
| 270 |
+
### Bước 3: Verify Upload
|
| 271 |
+
|
| 272 |
+
Kiểm tra kết quả upload:
|
| 273 |
+
|
| 274 |
+
https://via.placeholder.com/500x300?text=Upload+Success+Message
|
| 275 |
+
|
| 276 |
+
## 2. Chat Với Chatbot
|
| 277 |
+
|
| 278 |
+
Sau khi upload, bạn có thể hỏi chatbot:
|
| 279 |
+
|
| 280 |
+

|
| 281 |
+
|
| 282 |
+
**Ví dụ câu hỏi:**
|
| 283 |
+
- "Làm sao để upload PDF?"
|
| 284 |
+
- "Các bước tạo event là gì?"
|
| 285 |
+
|
| 286 |
+

|
| 287 |
+
|
| 288 |
+
## 3. Xem Kết Quả
|
| 289 |
+
|
| 290 |
+
Chatbot sẽ trả lời dựa trên PDF content:
|
| 291 |
+
|
| 292 |
+
https://via.placeholder.com/600x350?text=Chat+Response+with+Images
|
| 293 |
+
```
|
| 294 |
+
|
| 295 |
+
**Convert to PDF:**
|
| 296 |
+
```bash
|
| 297 |
+
pandoc chatbot_guide_with_images.md -o chatbot_guide_with_images.pdf
|
| 298 |
+
```
|
| 299 |
+
|
| 300 |
+
**Upload:**
|
| 301 |
+
```bash
|
| 302 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
|
| 303 |
+
-F "file=@chatbot_guide_with_images.pdf" \
|
| 304 |
+
-F "title=ChatbotRAG Guide" \
|
| 305 |
+
-F "category=user_guide"
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
---
|
| 309 |
+
|
| 310 |
+
## Advanced: Custom Image Handling
|
| 311 |
+
|
| 312 |
+
### Option 1: Local Images
|
| 313 |
+
|
| 314 |
+
Nếu images ở local, bạn cần host chúng:
|
| 315 |
+
|
| 316 |
+
```bash
|
| 317 |
+
# Simple HTTP server
|
| 318 |
+
cd /path/to/images
|
| 319 |
+
python -m http.server 8080
|
| 320 |
+
|
| 321 |
+
# Images available at:
|
| 322 |
+
# http://localhost:8080/image1.png
|
| 323 |
+
# http://localhost:8080/image2.png
|
| 324 |
+
```
|
| 325 |
+
|
| 326 |
+
Trong PDF, reference:
|
| 327 |
+
```
|
| 328 |
+

|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### Option 2: Cloud Storage
|
| 332 |
+
|
| 333 |
+
Upload images lên cloud (AWS S3, Cloudinary, Imgur, etc.):
|
| 334 |
+
|
| 335 |
+
```python
|
| 336 |
+
# Example: Upload to Imgur
|
| 337 |
+
import requests
|
| 338 |
+
|
| 339 |
+
def upload_to_imgur(image_path):
|
| 340 |
+
client_id = 'YOUR_CLIENT_ID'
|
| 341 |
+
headers = {'Authorization': f'Client-ID {client_id}'}
|
| 342 |
+
|
| 343 |
+
with open(image_path, 'rb') as img:
|
| 344 |
+
response = requests.post(
|
| 345 |
+
'https://api.imgur.com/3/image',
|
| 346 |
+
headers=headers,
|
| 347 |
+
files={'image': img}
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
return response.json()['data']['link']
|
| 351 |
+
|
| 352 |
+
# Upload images
|
| 353 |
+
url1 = upload_to_imgur('screenshot1.png')
|
| 354 |
+
url2 = upload_to_imgur('screenshot2.png')
|
| 355 |
+
|
| 356 |
+
# Use URLs in PDF
|
| 357 |
+
print(f"")
|
| 358 |
+
```
|
| 359 |
+
|
| 360 |
+
### Option 3: Embed Images as Base64
|
| 361 |
+
|
| 362 |
+
Nếu PDF có images embedded, extract chúng:
|
| 363 |
+
|
| 364 |
+
```python
|
| 365 |
+
import pypdfium2 as pdfium
|
| 366 |
+
from PIL import Image
|
| 367 |
+
import io
|
| 368 |
+
import base64
|
| 369 |
+
|
| 370 |
+
def extract_images_from_pdf(pdf_path):
|
| 371 |
+
"""Extract embedded images from PDF"""
|
| 372 |
+
pdf = pdfium.PdfDocument(pdf_path)
|
| 373 |
+
images = []
|
| 374 |
+
|
| 375 |
+
for page_num in range(len(pdf)):
|
| 376 |
+
page = pdf[page_num]
|
| 377 |
+
# Render page as image
|
| 378 |
+
bitmap = page.render(scale=2.0)
|
| 379 |
+
pil_image = bitmap.to_pil()
|
| 380 |
+
|
| 381 |
+
# Save or convert to base64
|
| 382 |
+
buffered = io.BytesIO()
|
| 383 |
+
pil_image.save(buffered, format="PNG")
|
| 384 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 385 |
+
|
| 386 |
+
images.append({
|
| 387 |
+
'page': page_num + 1,
|
| 388 |
+
'base64': img_str,
|
| 389 |
+
'url': f'data:image/png;base64,{img_str}'
|
| 390 |
+
})
|
| 391 |
+
|
| 392 |
+
return images
|
| 393 |
+
```
|
| 394 |
+
|
| 395 |
+
---
|
| 396 |
+
|
| 397 |
+
## Troubleshooting
|
| 398 |
+
|
| 399 |
+
### Images không được detect
|
| 400 |
+
|
| 401 |
+
**Nguyên nhân:**
|
| 402 |
+
- URLs không đúng format (thiếu http://)
|
| 403 |
+
- URLs bị line break
|
| 404 |
+
- Markdown syntax sai
|
| 405 |
+
|
| 406 |
+
**Giải pháp:**
|
| 407 |
+
```python
|
| 408 |
+
# Test URL detection
|
| 409 |
+
from multimodal_pdf_parser import MultimodalPDFParser
|
| 410 |
+
|
| 411 |
+
parser = MultimodalPDFParser()
|
| 412 |
+
test_text = """
|
| 413 |
+
Xem hình: https://example.com/image.png
|
| 414 |
+

|
| 415 |
+
"""
|
| 416 |
+
|
| 417 |
+
urls = parser.extract_image_urls(test_text)
|
| 418 |
+
print("Found URLs:", urls)
|
| 419 |
+
```
|
| 420 |
+
|
| 421 |
+
### Chatbot không return images
|
| 422 |
+
|
| 423 |
+
**Check:**
|
| 424 |
+
1. Verify PDF đã được index với multimodal parser:
|
| 425 |
+
```bash
|
| 426 |
+
curl http://localhost:8000/documents/pdf
|
| 427 |
+
# Look for "type": "multimodal_pdf"
|
| 428 |
+
```
|
| 429 |
+
|
| 430 |
+
2. Check metadata có `image_urls`:
|
| 431 |
+
```python
|
| 432 |
+
response = requests.post('http://localhost:8000/chat', ...)
|
| 433 |
+
for ctx in response.json()['context_used']:
|
| 434 |
+
print(ctx['metadata'].get('image_urls', []))
|
| 435 |
+
```
|
| 436 |
+
|
| 437 |
+
### Images quá nhiều → chunks lớn
|
| 438 |
+
|
| 439 |
+
**Solution:** Giảm số images mỗi chunk:
|
| 440 |
+
|
| 441 |
+
```python
|
| 442 |
+
# In multimodal_pdf_parser.py
|
| 443 |
+
parser = MultimodalPDFParser(
|
| 444 |
+
chunk_size=300, # Smaller chunks
|
| 445 |
+
chunk_overlap=30,
|
| 446 |
+
extract_images=True
|
| 447 |
+
)
|
| 448 |
+
```
|
| 449 |
+
|
| 450 |
+
---
|
| 451 |
+
|
| 452 |
+
## Kết Luận
|
| 453 |
+
|
| 454 |
+
### Khi Nào Dùng Multimodal PDF?
|
| 455 |
+
|
| 456 |
+
✓ **Sử dụng `/upload-pdf-multimodal` khi:**
|
| 457 |
+
- PDF có hình ảnh minh họa (screenshots, diagrams)
|
| 458 |
+
- Cần chatbot reference hình ảnh khi trả lời
|
| 459 |
+
- User guides, tutorials với visual instructions
|
| 460 |
+
- Documentation với charts, tables as images
|
| 461 |
+
|
| 462 |
+
✓ **Sử dụng `/upload-pdf` thường khi:**
|
| 463 |
+
- PDF chỉ có text thuần
|
| 464 |
+
- Không cần images trong context
|
| 465 |
+
- Simple documents, FAQs
|
| 466 |
+
|
| 467 |
+
### Workflow Hoàn Chỉnh
|
| 468 |
+
|
| 469 |
+
1. **Tạo PDF** với text + image URLs (Markdown/HTML)
|
| 470 |
+
2. **Upload** qua `/upload-pdf-multimodal`
|
| 471 |
+
3. **Verify** images đã được detect
|
| 472 |
+
4. **Chat** - images sẽ tự động được include in context
|
| 473 |
+
5. **Display** images trong UI của bạn
|
| 474 |
+
|
| 475 |
+
---
|
| 476 |
+
|
| 477 |
+
## Example: Full Workflow
|
| 478 |
+
|
| 479 |
+
```python
|
| 480 |
+
"""
|
| 481 |
+
Complete workflow: Create, upload, and chat with multimodal PDF
|
| 482 |
+
"""
|
| 483 |
+
import requests
|
| 484 |
+
|
| 485 |
+
# 1. Upload multimodal PDF
|
| 486 |
+
print("=== Uploading Multimodal PDF ===")
|
| 487 |
+
with open('user_guide_with_images.pdf', 'rb') as f:
|
| 488 |
+
response = requests.post(
|
| 489 |
+
'http://localhost:8000/upload-pdf-multimodal',
|
| 490 |
+
files={'file': f},
|
| 491 |
+
data={'title': 'User Guide', 'category': 'guide'}
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
result = response.json()
|
| 495 |
+
print(f"✓ Indexed: {result['chunks_indexed']} chunks")
|
| 496 |
+
print(f"✓ Message: {result['message']}")
|
| 497 |
+
|
| 498 |
+
# 2. Chat with multimodal context
|
| 499 |
+
print("\n=== Chatting ===")
|
| 500 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 501 |
+
'message': 'Làm sao để tạo event mới? Cho tôi xem hình minh họa.',
|
| 502 |
+
'use_rag': True,
|
| 503 |
+
'use_advanced_rag': True,
|
| 504 |
+
'top_k': 3,
|
| 505 |
+
'hf_token': 'your_token'
|
| 506 |
+
})
|
| 507 |
+
|
| 508 |
+
chat_result = response.json()
|
| 509 |
+
print(f"Answer: {chat_result['response']}\n")
|
| 510 |
+
|
| 511 |
+
# 3. Display context with images
|
| 512 |
+
print("=== Context with Images ===")
|
| 513 |
+
for i, ctx in enumerate(chat_result['context_used'], 1):
|
| 514 |
+
print(f"\n[{i}] Page {ctx['metadata']['page']}, Confidence: {ctx['confidence']:.2%}")
|
| 515 |
+
print(f"Text: {ctx['metadata']['text'][:150]}...")
|
| 516 |
+
|
| 517 |
+
if ctx['metadata'].get('has_images'):
|
| 518 |
+
print(f"Images ({ctx['metadata']['num_images']}):")
|
| 519 |
+
for url in ctx['metadata']['image_urls']:
|
| 520 |
+
print(f" 🖼️ {url}")
|
| 521 |
+
```
|
| 522 |
+
|
| 523 |
+
---
|
| 524 |
+
|
| 525 |
+
**Bây giờ PDF của bạn có hình ảnh minh họa sẽ work perfectly! 🎨📄**
|
PDF_RAG_GUIDE.md
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hướng Dẫn Sử Dụng PDF với ChatbotRAG
|
| 2 |
+
|
| 3 |
+
## Tổng Quan
|
| 4 |
+
|
| 5 |
+
Hệ thống ChatbotRAG hiện đã hỗ trợ **tải lên và index PDF** để chatbot có thể trả lời câu hỏi dựa trên nội dung trong PDF. Điều này rất hữu ích cho:
|
| 6 |
+
- Hướng dẫn sử dụng sản phẩm
|
| 7 |
+
- Tài liệu FAQ
|
| 8 |
+
- Chính sách, quy định
|
| 9 |
+
- Tài liệu kỹ thuật
|
| 10 |
+
|
| 11 |
+
## Cách Thức Hoạt Động
|
| 12 |
+
|
| 13 |
+
1. **Upload PDF** → Hệ thống parse PDF thành text
|
| 14 |
+
2. **Chunking** → Text được chia thành các chunks (mặc định: 500 words/chunk, overlap 50 words)
|
| 15 |
+
3. **Embedding** → Mỗi chunk được convert thành vector embedding
|
| 16 |
+
4. **Indexing** → Lưu vào Qdrant + MongoDB
|
| 17 |
+
5. **Chat** → Chatbot tìm kiếm chunks liên quan và trả lời câu hỏi
|
| 18 |
+
|
| 19 |
+
## Cách 1: Upload PDF Qua API
|
| 20 |
+
|
| 21 |
+
### Endpoint: `POST /upload-pdf`
|
| 22 |
+
|
| 23 |
+
**Request:**
|
| 24 |
+
```bash
|
| 25 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 26 |
+
-F "file=@huong_dan_su_dung.pdf" \
|
| 27 |
+
-F "title=Hướng dẫn sử dụng ChatbotRAG" \
|
| 28 |
+
-F "description=Tài liệu hướng dẫn đầy đủ về ChatbotRAG" \
|
| 29 |
+
-F "category=user_guide"
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
**Python:**
|
| 33 |
+
```python
|
| 34 |
+
import requests
|
| 35 |
+
|
| 36 |
+
with open('huong_dan_su_dung.pdf', 'rb') as f:
|
| 37 |
+
files = {'file': f}
|
| 38 |
+
data = {
|
| 39 |
+
'title': 'Hướng dẫn sử dụng ChatbotRAG',
|
| 40 |
+
'description': 'Tài liệu hướng dẫn đầy đủ',
|
| 41 |
+
'category': 'user_guide'
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
response = requests.post(
|
| 45 |
+
'http://localhost:8000/upload-pdf',
|
| 46 |
+
files=files,
|
| 47 |
+
data=data
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
print(response.json())
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
**Response:**
|
| 54 |
+
```json
|
| 55 |
+
{
|
| 56 |
+
"success": true,
|
| 57 |
+
"document_id": "pdf_20251029_143022",
|
| 58 |
+
"filename": "huong_dan_su_dung.pdf",
|
| 59 |
+
"chunks_indexed": 45,
|
| 60 |
+
"message": "PDF 'huong_dan_su_dung.pdf' đã được index thành công với 45 chunks"
|
| 61 |
+
}
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### Tham Số:
|
| 65 |
+
- `file` (required): File PDF
|
| 66 |
+
- `document_id` (optional): ID tùy chỉnh, mặc định auto-generate
|
| 67 |
+
- `title` (optional): Tiêu đề tài liệu
|
| 68 |
+
- `description` (optional): Mô tả
|
| 69 |
+
- `category` (optional): Danh mục (user_guide, faq, policy, etc.)
|
| 70 |
+
|
| 71 |
+
## Cách 2: Batch Index Nhiều PDFs
|
| 72 |
+
|
| 73 |
+
Nếu bạn có nhiều PDF files, sử dụng script batch:
|
| 74 |
+
|
| 75 |
+
```bash
|
| 76 |
+
# Index tất cả PDFs trong thư mục
|
| 77 |
+
python batch_index_pdfs.py ./docs/user_guides
|
| 78 |
+
|
| 79 |
+
# Với category tùy chỉnh
|
| 80 |
+
python batch_index_pdfs.py ./docs/policies --category=policy
|
| 81 |
+
|
| 82 |
+
# Force reindex (ghi đè nếu đã có)
|
| 83 |
+
python batch_index_pdfs.py ./docs/faq --category=faq --force
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
Script sẽ tự động:
|
| 87 |
+
- Scan tất cả file .pdf trong thư mục
|
| 88 |
+
- Index từng file với metadata phù hợp
|
| 89 |
+
- Skip những file đã index (trừ khi dùng --force)
|
| 90 |
+
- Hiển thị progress và summary
|
| 91 |
+
|
| 92 |
+
## Quản Lý PDF Documents
|
| 93 |
+
|
| 94 |
+
### Xem Danh Sách PDFs
|
| 95 |
+
|
| 96 |
+
```bash
|
| 97 |
+
curl http://localhost:8000/documents/pdf
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
**Response:**
|
| 101 |
+
```json
|
| 102 |
+
{
|
| 103 |
+
"documents": [
|
| 104 |
+
{
|
| 105 |
+
"document_id": "pdf_user_guide",
|
| 106 |
+
"type": "pdf",
|
| 107 |
+
"filename": "huong_dan_su_dung.pdf",
|
| 108 |
+
"num_chunks": 45,
|
| 109 |
+
"metadata": {
|
| 110 |
+
"title": "Hướng dẫn sử dụng",
|
| 111 |
+
"category": "user_guide"
|
| 112 |
+
}
|
| 113 |
+
}
|
| 114 |
+
],
|
| 115 |
+
"total": 1
|
| 116 |
+
}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### Xóa PDF Document
|
| 120 |
+
|
| 121 |
+
```bash
|
| 122 |
+
# Xóa document và tất cả chunks của nó
|
| 123 |
+
curl -X DELETE http://localhost:8000/documents/pdf/pdf_user_guide
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
## Chat Với PDF Content
|
| 127 |
+
|
| 128 |
+
Sau khi index PDF, bạn có thể chat như bình thường:
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
+
import requests
|
| 132 |
+
|
| 133 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 134 |
+
'message': 'Làm sao để upload PDF vào ChatbotRAG?',
|
| 135 |
+
'use_rag': True,
|
| 136 |
+
'use_advanced_rag': True,
|
| 137 |
+
'top_k': 5,
|
| 138 |
+
'hf_token': 'your_hf_token'
|
| 139 |
+
})
|
| 140 |
+
|
| 141 |
+
result = response.json()
|
| 142 |
+
print("Answer:", result['response'])
|
| 143 |
+
|
| 144 |
+
# Xem sources
|
| 145 |
+
for ctx in result['context_used']:
|
| 146 |
+
print(f"- Page {ctx['metadata']['page']}: {ctx['metadata']['text'][:100]}...")
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
Chatbot sẽ tự động tìm kiếm trong PDF và trả lời dựa trên nội dung đã index.
|
| 150 |
+
|
| 151 |
+
## Tạo PDF Hướng Dẫn Sử Dụng
|
| 152 |
+
|
| 153 |
+
### Template Nội Dung
|
| 154 |
+
|
| 155 |
+
Dưới đây là cấu trúc đề xuất cho PDF hướng dẫn ChatbotRAG:
|
| 156 |
+
|
| 157 |
+
```
|
| 158 |
+
HƯỚNG DẪN SỬ DỤNG CHATBOTRAG
|
| 159 |
+
|
| 160 |
+
1. GIỚI THIỆU
|
| 161 |
+
- ChatbotRAG là gì?
|
| 162 |
+
- Tính năng chính
|
| 163 |
+
- Use cases
|
| 164 |
+
|
| 165 |
+
2. BẮT ĐẦU NHANH
|
| 166 |
+
2.1. Cài đặt
|
| 167 |
+
2.2. Khởi động server
|
| 168 |
+
2.3. Truy cập API
|
| 169 |
+
|
| 170 |
+
3. INDEX DỮ LIỆU
|
| 171 |
+
3.1. Index text đơn giản
|
| 172 |
+
3.2. Index với images
|
| 173 |
+
3.3. Index nhiều texts và images cùng lúc
|
| 174 |
+
3.4. Upload PDF
|
| 175 |
+
|
| 176 |
+
4. TÌM KIẾM
|
| 177 |
+
4.1. Search bằng text
|
| 178 |
+
4.2. Search bằng image
|
| 179 |
+
4.3. Hybrid search
|
| 180 |
+
|
| 181 |
+
5. CHAT VỚI CHATBOT
|
| 182 |
+
5.1. Chat cơ bản
|
| 183 |
+
5.2. Chat với RAG
|
| 184 |
+
5.3. Advanced RAG options
|
| 185 |
+
5.4. Tùy chỉnh LLM parameters
|
| 186 |
+
|
| 187 |
+
6. QUẢN LÝ DOCUMENTS
|
| 188 |
+
6.1. Xem danh sách documents
|
| 189 |
+
6.2. Xóa documents
|
| 190 |
+
6.3. Quản lý PDF files
|
| 191 |
+
|
| 192 |
+
7. CÂU HỎI THƯỜNG GẶP (FAQ)
|
| 193 |
+
- Làm sao để upload PDF?
|
| 194 |
+
- Chatbot không tìm thấy thông tin?
|
| 195 |
+
- Làm sao để cải thiện độ chính xác?
|
| 196 |
+
- Token limit là bao nhiêu?
|
| 197 |
+
|
| 198 |
+
8. API REFERENCE
|
| 199 |
+
- POST /index
|
| 200 |
+
- POST /search
|
| 201 |
+
- POST /chat
|
| 202 |
+
- POST /upload-pdf
|
| 203 |
+
- GET /documents/pdf
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
### Tạo PDF Từ Markdown
|
| 207 |
+
|
| 208 |
+
Bạn có thể tạo PDF từ Markdown bằng nhiều tools:
|
| 209 |
+
|
| 210 |
+
**1. Pandoc (Recommended):**
|
| 211 |
+
```bash
|
| 212 |
+
pandoc guide.md -o guide.pdf --pdf-engine=xelatex
|
| 213 |
+
```
|
| 214 |
+
|
| 215 |
+
**2. Online Tools:**
|
| 216 |
+
- https://www.markdowntopdf.com/
|
| 217 |
+
- https://md2pdf.netlify.app/
|
| 218 |
+
|
| 219 |
+
**3. VS Code Extension:**
|
| 220 |
+
- Install "Markdown PDF" extension
|
| 221 |
+
- Right-click file .md → "Markdown PDF: Export (pdf)"
|
| 222 |
+
|
| 223 |
+
### Ví Dụ Markdown Content
|
| 224 |
+
|
| 225 |
+
Tạo file `chatbot_guide.md`:
|
| 226 |
+
|
| 227 |
+
```markdown
|
| 228 |
+
# Hướng Dẫn Sử Dụng ChatbotRAG
|
| 229 |
+
|
| 230 |
+
## 1. Upload PDF
|
| 231 |
+
|
| 232 |
+
Để upload PDF vào hệ thống:
|
| 233 |
+
|
| 234 |
+
### Bước 1: Chuẩn bị file PDF
|
| 235 |
+
- File phải có định dạng .pdf
|
| 236 |
+
- Nội dung nên rõ ràng, có cấu trúc
|
| 237 |
+
|
| 238 |
+
### Bước 2: Upload qua API
|
| 239 |
+
|
| 240 |
+
\`\`\`bash
|
| 241 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 242 |
+
-F "file=@your_file.pdf" \
|
| 243 |
+
-F "title=Tên tài liệu"
|
| 244 |
+
\`\`\`
|
| 245 |
+
|
| 246 |
+
### Bước 3: Kiểm tra
|
| 247 |
+
Sau khi upload, hệ thống sẽ trả về số chunks đã được index.
|
| 248 |
+
|
| 249 |
+
## 2. Chat Với Chatbot
|
| 250 |
+
|
| 251 |
+
Sau khi upload PDF, bạn có thể hỏi chatbot:
|
| 252 |
+
|
| 253 |
+
**Ví dụ:**
|
| 254 |
+
- "Làm sao để upload PDF?"
|
| 255 |
+
- "Các bước tạo event là gì?"
|
| 256 |
+
- "Tính năng nào trong hệ thống?"
|
| 257 |
+
|
| 258 |
+
Chatbot sẽ tìm kiếm trong PDF và trả lời dựa trên nội dung đã index.
|
| 259 |
+
|
| 260 |
+
## 3. FAQ
|
| 261 |
+
|
| 262 |
+
### Câu hỏi 1: Upload PDF tối đa bao nhiêu trang?
|
| 263 |
+
Không giới hạn, nhưng PDF càng lớn thì thời gian index càng lâu.
|
| 264 |
+
|
| 265 |
+
### Câu hỏi 2: Có thể upload nhiều PDFs không?
|
| 266 |
+
Có, bạn có thể upload nhiều PDFs. Mỗi PDF sẽ có document_id riêng.
|
| 267 |
+
|
| 268 |
+
### Câu hỏi 3: Làm sao để xóa PDF đã upload?
|
| 269 |
+
Sử dụng endpoint DELETE /documents/pdf/{document_id}
|
| 270 |
+
```
|
| 271 |
+
|
| 272 |
+
Sau đó convert sang PDF:
|
| 273 |
+
```bash
|
| 274 |
+
pandoc chatbot_guide.md -o chatbot_guide.pdf
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
## Best Practices
|
| 278 |
+
|
| 279 |
+
### 1. Cấu Trúc PDF
|
| 280 |
+
- ✓ Có tiêu đề rõ ràng
|
| 281 |
+
- ✓ Chia sections/chapters
|
| 282 |
+
- ✓ Sử dụng bullet points
|
| 283 |
+
- ✓ Tránh quá nhiều hình ảnh phức tạp (text extraction khó)
|
| 284 |
+
|
| 285 |
+
### 2. Nội Dung
|
| 286 |
+
- ✓ Viết câu ngắn gọn, dễ hiểu
|
| 287 |
+
- ✓ Mỗi section tập trung 1 chủ đề
|
| 288 |
+
- ✓ Có ví dụ cụ thể
|
| 289 |
+
- ✗ Tránh văn xuôi dài, khó tách câu
|
| 290 |
+
|
| 291 |
+
### 3. Metadata
|
| 292 |
+
- Luôn đặt `title` rõ ràng
|
| 293 |
+
- Sử dụng `category` để phân loại
|
| 294 |
+
- Thêm `description` cho dễ quản lý
|
| 295 |
+
|
| 296 |
+
### 4. Chunking
|
| 297 |
+
Mặc định:
|
| 298 |
+
- Chunk size: 500 words
|
| 299 |
+
- Overlap: 50 words
|
| 300 |
+
|
| 301 |
+
Có thể tùy chỉnh trong `pdf_parser.py`:
|
| 302 |
+
```python
|
| 303 |
+
parser = PDFParser(
|
| 304 |
+
chunk_size=500, # Tăng nếu muốn context dài hơn
|
| 305 |
+
chunk_overlap=50, # Tăng để giữ context tốt hơn
|
| 306 |
+
min_chunk_size=50 # Min words cho 1 chunk
|
| 307 |
+
)
|
| 308 |
+
```
|
| 309 |
+
|
| 310 |
+
## Troubleshooting
|
| 311 |
+
|
| 312 |
+
### Lỗi: "Error reading PDF"
|
| 313 |
+
- Kiểm tra file PDF có bị corrupt không
|
| 314 |
+
- Thử mở bằng PDF reader để verify
|
| 315 |
+
- Convert lại PDF nếu cần
|
| 316 |
+
|
| 317 |
+
### Lỗi: "No text extracted"
|
| 318 |
+
- PDF có thể là scanned images (không có text layer)
|
| 319 |
+
- Cần OCR trước khi index (dùng tools như Tesseract)
|
| 320 |
+
|
| 321 |
+
### Chatbot không tìm thấy thông tin
|
| 322 |
+
- Kiểm tra `score_threshold` - thử giảm xuống (e.g., 0.3)
|
| 323 |
+
- Tăng `top_k` để retrieve nhiều documents hơn
|
| 324 |
+
- Rephrase câu hỏi
|
| 325 |
+
|
| 326 |
+
### Chunks quá ngắn/dài
|
| 327 |
+
- Điều chỉnh `chunk_size` trong `pdf_parser.py`
|
| 328 |
+
- Reindex PDF với settings mới
|
| 329 |
+
|
| 330 |
+
## Complete Example
|
| 331 |
+
|
| 332 |
+
```python
|
| 333 |
+
# 1. Upload PDF
|
| 334 |
+
import requests
|
| 335 |
+
|
| 336 |
+
with open('user_guide.pdf', 'rb') as f:
|
| 337 |
+
response = requests.post(
|
| 338 |
+
'http://localhost:8000/upload-pdf',
|
| 339 |
+
files={'file': f},
|
| 340 |
+
data={
|
| 341 |
+
'title': 'Hướng dẫn sử dụng',
|
| 342 |
+
'category': 'user_guide'
|
| 343 |
+
}
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
doc_id = response.json()['document_id']
|
| 347 |
+
print(f"Uploaded: {doc_id}")
|
| 348 |
+
|
| 349 |
+
# 2. List PDFs
|
| 350 |
+
response = requests.get('http://localhost:8000/documents/pdf')
|
| 351 |
+
print(response.json())
|
| 352 |
+
|
| 353 |
+
# 3. Chat
|
| 354 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 355 |
+
'message': 'Làm sao để tạo event mới?',
|
| 356 |
+
'use_rag': True,
|
| 357 |
+
'use_advanced_rag': True,
|
| 358 |
+
'hf_token': 'your_token'
|
| 359 |
+
})
|
| 360 |
+
|
| 361 |
+
print("Answer:", response.json()['response'])
|
| 362 |
+
|
| 363 |
+
# 4. Delete PDF (if needed)
|
| 364 |
+
response = requests.delete(f'http://localhost:8000/documents/pdf/{doc_id}')
|
| 365 |
+
print(response.json())
|
| 366 |
+
```
|
| 367 |
+
|
| 368 |
+
## Next Steps
|
| 369 |
+
|
| 370 |
+
1. **Tạo PDF hướng dẫn của bạn** với nội dung về hệ thống của bạn
|
| 371 |
+
2. **Upload PDF** vào hệ thống
|
| 372 |
+
3. **Test chatbot** - hỏi các câu hỏi về nội dung trong PDF
|
| 373 |
+
4. **Fine-tune** - điều chỉnh parameters nếu cần
|
| 374 |
+
5. **Add more PDFs** - thêm FAQs, policies, etc.
|
| 375 |
+
|
| 376 |
+
## Support
|
| 377 |
+
|
| 378 |
+
Nếu có vấn đề, check:
|
| 379 |
+
- Server logs để xem errors
|
| 380 |
+
- MongoDB để xem documents đã được lưu chưa
|
| 381 |
+
- Qdrant collection để verify chunks đã được index
|
| 382 |
+
|
| 383 |
+
## Conclusion
|
| 384 |
+
|
| 385 |
+
Hệ thống PDF RAG giúp chatbot của bạn trả lời câu hỏi dựa trên tài liệu có sẵn, không cần train lại model. Bạn chỉ cần:
|
| 386 |
+
1. Upload PDF
|
| 387 |
+
2. Chat như bình thường
|
| 388 |
+
3. Chatbot sẽ tìm kiếm và trả lời dựa trên PDF content
|
| 389 |
+
|
| 390 |
+
Đơn giản và hiệu quả!
|
QUICK_START_PDF.md
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Quick Start: PDF-Based ChatbotRAG
|
| 2 |
+
|
| 3 |
+
## Tóm Tắt Nhanh
|
| 4 |
+
|
| 5 |
+
Bây giờ bạn có thể:
|
| 6 |
+
1. **Upload PDF** hướng dẫn sử dụng vào hệ thống
|
| 7 |
+
2. **Chatbot tự động trả lời** các câu hỏi dựa trên nội dung trong PDF
|
| 8 |
+
3. Không cần train model, chỉ cần upload PDF!
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
## Quy Trình Hoàn Chỉnh
|
| 13 |
+
|
| 14 |
+
### Bước 1: Tạo PDF Hướng Dẫn
|
| 15 |
+
|
| 16 |
+
Bạn có 2 cách:
|
| 17 |
+
|
| 18 |
+
**Cách 1: Sử dụng Template Có Sẵn**
|
| 19 |
+
|
| 20 |
+
File `chatbot_guide_template.md` đã sẵn sàng. Customize nội dung cho hệ thống của bạn, sau đó convert sang PDF:
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
# Cài pandoc (nếu chưa có)
|
| 24 |
+
# Windows: choco install pandoc
|
| 25 |
+
# Mac: brew install pandoc
|
| 26 |
+
# Linux: sudo apt-get install pandoc
|
| 27 |
+
|
| 28 |
+
# Convert markdown to PDF
|
| 29 |
+
pandoc chatbot_guide_template.md -o chatbot_user_guide.pdf --pdf-engine=xelatex
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
**Cách 2: Tự Viết Content**
|
| 33 |
+
|
| 34 |
+
Tạo file Word/Google Docs với nội dung hướng dẫn, sau đó:
|
| 35 |
+
- File → Export → PDF
|
| 36 |
+
|
| 37 |
+
**Nội dung nên bao gồm:**
|
| 38 |
+
- Giới thiệu hệ thống
|
| 39 |
+
- Các chức năng chính
|
| 40 |
+
- Hướng dẫn sử dụng từng tính năng
|
| 41 |
+
- FAQ (Câu hỏi thường gặp)
|
| 42 |
+
- Examples
|
| 43 |
+
|
| 44 |
+
### Bước 2: Upload PDF Vào Hệ Thống
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
# Khởi động server
|
| 48 |
+
cd ChatbotRAG
|
| 49 |
+
python main.py
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
Trong terminal khác:
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
# Upload PDF
|
| 56 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 57 |
+
-F "file=@chatbot_user_guide.pdf" \
|
| 58 |
+
-F "title=Hướng dẫn sử dụng ChatbotRAG" \
|
| 59 |
+
-F "description=Tài liệu hướng dẫn đầy đủ" \
|
| 60 |
+
-F "category=user_guide"
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
Hoặc dùng Python:
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
import requests
|
| 67 |
+
|
| 68 |
+
with open('chatbot_user_guide.pdf', 'rb') as f:
|
| 69 |
+
response = requests.post(
|
| 70 |
+
'http://localhost:8000/upload-pdf',
|
| 71 |
+
files={'file': f},
|
| 72 |
+
data={
|
| 73 |
+
'title': 'Hướng dẫn sử dụng ChatbotRAG',
|
| 74 |
+
'category': 'user_guide'
|
| 75 |
+
}
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
print(response.json())
|
| 79 |
+
# Output: {"success": true, "document_id": "pdf_...", "chunks_indexed": 45}
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
### Bước 3: Verify Upload
|
| 83 |
+
|
| 84 |
+
```bash
|
| 85 |
+
# Xem danh sách PDFs
|
| 86 |
+
curl http://localhost:8000/documents/pdf
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Bước 4: Chat!
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
import requests
|
| 93 |
+
|
| 94 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 95 |
+
'message': 'Làm sao để upload PDF vào ChatbotRAG?',
|
| 96 |
+
'use_rag': True,
|
| 97 |
+
'use_advanced_rag': True,
|
| 98 |
+
'top_k': 5,
|
| 99 |
+
'hf_token': 'your_huggingface_token' # Get from https://huggingface.co/settings/tokens
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
result = response.json()
|
| 103 |
+
print("Answer:", result['response'])
|
| 104 |
+
print("\nSources:")
|
| 105 |
+
for ctx in result['context_used']:
|
| 106 |
+
print(f"- Page {ctx['metadata']['page']}: Confidence {ctx['confidence']:.2%}")
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
---
|
| 110 |
+
|
| 111 |
+
## Test Script Mẫu
|
| 112 |
+
|
| 113 |
+
File `test_pdf_chatbot.py`:
|
| 114 |
+
|
| 115 |
+
```python
|
| 116 |
+
"""
|
| 117 |
+
Test PDF-based chatbot
|
| 118 |
+
"""
|
| 119 |
+
import requests
|
| 120 |
+
import time
|
| 121 |
+
|
| 122 |
+
BASE_URL = "http://localhost:8000"
|
| 123 |
+
HF_TOKEN = "your_huggingface_token" # Replace with your token
|
| 124 |
+
|
| 125 |
+
def upload_pdf():
|
| 126 |
+
"""Upload PDF guide"""
|
| 127 |
+
print("=== Uploading PDF ===")
|
| 128 |
+
|
| 129 |
+
with open('chatbot_user_guide.pdf', 'rb') as f:
|
| 130 |
+
response = requests.post(
|
| 131 |
+
f'{BASE_URL}/upload-pdf',
|
| 132 |
+
files={'file': f},
|
| 133 |
+
data={
|
| 134 |
+
'title': 'ChatbotRAG User Guide',
|
| 135 |
+
'category': 'user_guide'
|
| 136 |
+
}
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
result = response.json()
|
| 140 |
+
print(f"✓ Uploaded: {result['chunks_indexed']} chunks")
|
| 141 |
+
return result['document_id']
|
| 142 |
+
|
| 143 |
+
def chat(question):
|
| 144 |
+
"""Ask chatbot"""
|
| 145 |
+
print(f"\n=== Question: {question} ===")
|
| 146 |
+
|
| 147 |
+
response = requests.post(f'{BASE_URL}/chat', json={
|
| 148 |
+
'message': question,
|
| 149 |
+
'use_rag': True,
|
| 150 |
+
'use_advanced_rag': True,
|
| 151 |
+
'top_k': 5,
|
| 152 |
+
'hf_token': HF_TOKEN
|
| 153 |
+
})
|
| 154 |
+
|
| 155 |
+
result = response.json()
|
| 156 |
+
print(f"Answer: {result['response']}\n")
|
| 157 |
+
|
| 158 |
+
print(f"Retrieved {len(result['context_used'])} documents:")
|
| 159 |
+
for i, ctx in enumerate(result['context_used'], 1):
|
| 160 |
+
print(f"{i}. Page {ctx['metadata'].get('page')}, Confidence: {ctx['confidence']:.2%}")
|
| 161 |
+
|
| 162 |
+
def main():
|
| 163 |
+
# 1. Upload PDF
|
| 164 |
+
doc_id = upload_pdf()
|
| 165 |
+
|
| 166 |
+
# Wait for indexing to complete
|
| 167 |
+
time.sleep(2)
|
| 168 |
+
|
| 169 |
+
# 2. Test questions
|
| 170 |
+
questions = [
|
| 171 |
+
"Làm sao để upload PDF vào hệ thống?",
|
| 172 |
+
"Chatbot có support tiếng Việt không?",
|
| 173 |
+
"Tối đa bao nhiêu texts có thể index cùng lúc?",
|
| 174 |
+
"Advanced RAG có những tính năng gì?"
|
| 175 |
+
]
|
| 176 |
+
|
| 177 |
+
for q in questions:
|
| 178 |
+
chat(q)
|
| 179 |
+
time.sleep(1)
|
| 180 |
+
|
| 181 |
+
if __name__ == "__main__":
|
| 182 |
+
main()
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
Chạy:
|
| 186 |
+
```bash
|
| 187 |
+
python test_pdf_chatbot.py
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
## Upload Nhiều PDFs Cùng Lúc
|
| 193 |
+
|
| 194 |
+
Nếu bạn có nhiều PDFs (FAQ, User Guide, Policies, etc.):
|
| 195 |
+
|
| 196 |
+
```bash
|
| 197 |
+
# Đặt tất cả PDFs vào thư mục
|
| 198 |
+
mkdir docs
|
| 199 |
+
# Copy PDFs vào docs/
|
| 200 |
+
|
| 201 |
+
# Batch index
|
| 202 |
+
python batch_index_pdfs.py ./docs --category=user_guide
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
Script sẽ tự động index tất cả PDFs và skip những file đã có.
|
| 206 |
+
|
| 207 |
+
---
|
| 208 |
+
|
| 209 |
+
## Câu Hỏi Test Mẫu
|
| 210 |
+
|
| 211 |
+
Sau khi upload PDF hướng dẫn, test với các câu hỏi:
|
| 212 |
+
|
| 213 |
+
**Về tính năng:**
|
| 214 |
+
- "ChatbotRAG có những tính năng gì?"
|
| 215 |
+
- "Làm sao để index dữ liệu?"
|
| 216 |
+
- "Advanced RAG là gì?"
|
| 217 |
+
|
| 218 |
+
**Hướng dẫn sử dụng:**
|
| 219 |
+
- "Làm sao để upload PDF?"
|
| 220 |
+
- "Cách chat với chatbot như thế nào?"
|
| 221 |
+
- "Làm sao để xem lịch sử chat?"
|
| 222 |
+
|
| 223 |
+
**FAQ:**
|
| 224 |
+
- "Chatbot không tìm thấy thông tin phải làm sao?"
|
| 225 |
+
- "Tối đa bao nhiêu images có thể upload?"
|
| 226 |
+
- "Token limit là bao nhiêu?"
|
| 227 |
+
|
| 228 |
+
**Technical:**
|
| 229 |
+
- "Score threshold là gì?"
|
| 230 |
+
- "Top_k trong chat request có ý nghĩa gì?"
|
| 231 |
+
- "Làm sao để cải thiện độ chính xác?"
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
## Tips Để Chatbot Trả Lời Tốt
|
| 236 |
+
|
| 237 |
+
### 1. PDF Content Quality
|
| 238 |
+
- Viết rõ ràng, có cấu trúc
|
| 239 |
+
- Mỗi section tập trung 1 topic
|
| 240 |
+
- Có examples cụ thể
|
| 241 |
+
- FAQ với câu hỏi thực tế
|
| 242 |
+
|
| 243 |
+
### 2. Chat Settings
|
| 244 |
+
```python
|
| 245 |
+
{
|
| 246 |
+
'use_advanced_rag': True, # Luôn bật
|
| 247 |
+
'use_reranking': True, # Rerank cho accuracy
|
| 248 |
+
'use_compression': True, # Nén context
|
| 249 |
+
'score_threshold': 0.5, # 0.4-0.6 là tốt
|
| 250 |
+
'top_k': 5, # 3-7 tùy use case
|
| 251 |
+
'temperature': 0.3 # Thấp cho factual answers
|
| 252 |
+
}
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
### 3. Query Tips
|
| 256 |
+
- Hỏi câu rõ ràng, cụ thể
|
| 257 |
+
- Tránh câu hỏi quá chung chung
|
| 258 |
+
- Nếu không tìm thấy, rephrase câu hỏi
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## Monitoring
|
| 263 |
+
|
| 264 |
+
### Check Index Status
|
| 265 |
+
```bash
|
| 266 |
+
curl http://localhost:8000/stats
|
| 267 |
+
```
|
| 268 |
+
|
| 269 |
+
### View PDFs
|
| 270 |
+
```bash
|
| 271 |
+
curl http://localhost:8000/documents/pdf
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
### Check Chat History
|
| 275 |
+
```bash
|
| 276 |
+
curl "http://localhost:8000/history?limit=10"
|
| 277 |
+
```
|
| 278 |
+
|
| 279 |
+
---
|
| 280 |
+
|
| 281 |
+
## Kết Luận
|
| 282 |
+
|
| 283 |
+
Bây giờ bạn có thể:
|
| 284 |
+
|
| 285 |
+
✓ Tạo PDF hướng dẫn với nội dung của bạn
|
| 286 |
+
✓ Upload PDF vào hệ thống trong vài giây
|
| 287 |
+
✓ Chatbot tự động trả lời dựa trên PDF content
|
| 288 |
+
✓ Không cần train, không cần code phức tạp
|
| 289 |
+
✓ Update content? Chỉ cần upload PDF mới!
|
| 290 |
+
|
| 291 |
+
**Next Steps:**
|
| 292 |
+
1. Tạo PDF hướng dẫn của bạn (hoặc customize template)
|
| 293 |
+
2. Upload vào hệ thống
|
| 294 |
+
3. Test với câu hỏi thực tế
|
| 295 |
+
4. Fine-tune settings nếu cần
|
| 296 |
+
5. Add thêm PDFs (FAQ, policies, etc.)
|
| 297 |
+
|
| 298 |
+
---
|
| 299 |
+
|
| 300 |
+
## Files Quan Trọng
|
| 301 |
+
|
| 302 |
+
- `pdf_parser.py` - PDF parsing engine
|
| 303 |
+
- `batch_index_pdfs.py` - Batch indexing script
|
| 304 |
+
- `chatbot_guide_template.md` - Template PDF content
|
| 305 |
+
- `PDF_RAG_GUIDE.md` - Chi tiết về PDF RAG
|
| 306 |
+
- `ADVANCED_RAG_GUIDE.md` - Advanced RAG features
|
| 307 |
+
|
| 308 |
+
---
|
| 309 |
+
|
| 310 |
+
**Chúc bạn thành công! 🚀**
|
SUMMARY.md
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ChatbotRAG - Complete Summary
|
| 2 |
+
|
| 3 |
+
## Tổng Quan Hệ Thống
|
| 4 |
+
|
| 5 |
+
Hệ thống ChatbotRAG hiện đã được nâng cấp toàn diện với các tính năng advanced:
|
| 6 |
+
|
| 7 |
+
### ✨ Tính Năng Chính
|
| 8 |
+
|
| 9 |
+
1. **Multiple Inputs Support** (/index)
|
| 10 |
+
- Index tối đa 10 texts + 10 images cùng lúc
|
| 11 |
+
- Average embeddings tự động
|
| 12 |
+
|
| 13 |
+
2. **Advanced RAG Pipeline** (/chat)
|
| 14 |
+
- Query Expansion
|
| 15 |
+
- Multi-Query Retrieval
|
| 16 |
+
- Reranking with semantic similarity
|
| 17 |
+
- Contextual Compression
|
| 18 |
+
- Better Prompt Engineering
|
| 19 |
+
|
| 20 |
+
3. **PDF Support** (/upload-pdf)
|
| 21 |
+
- Parse PDF thành chunks
|
| 22 |
+
- Auto chunking với overlap
|
| 23 |
+
- Index vào RAG system
|
| 24 |
+
|
| 25 |
+
4. **Multimodal PDF** (/upload-pdf-multimodal) ⭐ NEW
|
| 26 |
+
- Extract text + image URLs từ PDF
|
| 27 |
+
- Link images với text chunks
|
| 28 |
+
- Return images cùng text trong chat
|
| 29 |
+
- Perfect cho user guides với screenshots
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
## Kiến Trúc Hệ Thống
|
| 34 |
+
|
| 35 |
+
```
|
| 36 |
+
┌─────────────────────────────────────────────────────────────┐
|
| 37 |
+
│ FastAPI Application │
|
| 38 |
+
├─────────────────────────────────────────────────────────────┤
|
| 39 |
+
│ │
|
| 40 |
+
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
| 41 |
+
│ │ Indexing │ │ Search │ │ Chat │ │
|
| 42 |
+
│ │ Endpoints │ │ Endpoints │ │ Endpoint │ │
|
| 43 |
+
│ └──────────────┘ └──────────────┘ └──────────────┘ │
|
| 44 |
+
│ │
|
| 45 |
+
├─────────────────────────────────────────────────────────────┤
|
| 46 |
+
│ │
|
| 47 |
+
│ ┌──────────────────────────────────────────────────────┐ │
|
| 48 |
+
│ │ Advanced RAG Pipeline │ │
|
| 49 |
+
│ │ • Query Expansion │ │
|
| 50 |
+
│ │ • Multi-Query Retrieval │ │
|
| 51 |
+
│ │ • Reranking │ │
|
| 52 |
+
│ │ • Contextual Compression │ │
|
| 53 |
+
│ └──────────────────────────────────────────────────────┘ │
|
| 54 |
+
│ │
|
| 55 |
+
├─────────────────────────────────────────────────────────────┤
|
| 56 |
+
│ │
|
| 57 |
+
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
| 58 |
+
│ │ Jina CLIP │ │ Qdrant │ │ MongoDB │ │
|
| 59 |
+
│ │ v2 │ │ Vector DB │ │ Documents │ │
|
| 60 |
+
│ └──────────────┘ └──────────────┘ └──────────────┘ │
|
| 61 |
+
│ │
|
| 62 |
+
│ ┌──────────────┐ ┌──────────────┐ │
|
| 63 |
+
│ │ PDF │ │ Multimodal │ │
|
| 64 |
+
│ │ Parser │ │ PDF Parser │ │
|
| 65 |
+
│ └──────────────┘ └──────────────┘ │
|
| 66 |
+
│ │
|
| 67 |
+
└─────────────────────────────────────────────────────────────┘
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
## Files Quan Trọng
|
| 73 |
+
|
| 74 |
+
### Core System
|
| 75 |
+
- **main.py** - FastAPI application với tất cả endpoints
|
| 76 |
+
- **embedding_service.py** - Jina CLIP v2 embedding
|
| 77 |
+
- **qdrant_service.py** - Qdrant vector DB operations
|
| 78 |
+
- **advanced_rag.py** - Advanced RAG pipeline
|
| 79 |
+
|
| 80 |
+
### PDF Processing
|
| 81 |
+
- **pdf_parser.py** - Basic PDF parser (text only)
|
| 82 |
+
- **multimodal_pdf_parser.py** - Multimodal PDF parser (text + images)
|
| 83 |
+
- **batch_index_pdfs.py** - Batch indexing script
|
| 84 |
+
|
| 85 |
+
### Documentation
|
| 86 |
+
- **ADVANCED_RAG_GUIDE.md** - Advanced RAG features guide
|
| 87 |
+
- **PDF_RAG_GUIDE.md** - PDF usage guide
|
| 88 |
+
- **MULTIMODAL_PDF_GUIDE.md** - Multimodal PDF guide ⭐
|
| 89 |
+
- **QUICK_START_PDF.md** - Quick start for PDF
|
| 90 |
+
- **chatbot_guide_template.md** - Template for user guide PDF
|
| 91 |
+
|
| 92 |
+
### Testing
|
| 93 |
+
- **test_advanced_features.py** - Test advanced features
|
| 94 |
+
- **test_pdf_chatbot.py** - Test PDF chatbot (example in docs)
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## API Endpoints
|
| 99 |
+
|
| 100 |
+
### 1. Indexing
|
| 101 |
+
|
| 102 |
+
| Endpoint | Method | Description |
|
| 103 |
+
|----------|--------|-------------|
|
| 104 |
+
| `/index` | POST | Index texts + images (max 10 each) |
|
| 105 |
+
| `/documents` | POST | Add text document |
|
| 106 |
+
| `/upload-pdf` | POST | Upload PDF (text only) |
|
| 107 |
+
| `/upload-pdf-multimodal` | POST | Upload PDF with images ⭐ |
|
| 108 |
+
|
| 109 |
+
### 2. Search
|
| 110 |
+
|
| 111 |
+
| Endpoint | Method | Description |
|
| 112 |
+
|----------|--------|-------------|
|
| 113 |
+
| `/search` | POST | Hybrid search (text + image) |
|
| 114 |
+
| `/search/text` | POST | Text-only search |
|
| 115 |
+
| `/search/image` | POST | Image-only search |
|
| 116 |
+
| `/rag/search` | POST | RAG knowledge base search |
|
| 117 |
+
|
| 118 |
+
### 3. Chat
|
| 119 |
+
|
| 120 |
+
| Endpoint | Method | Description |
|
| 121 |
+
|----------|--------|-------------|
|
| 122 |
+
| `/chat` | POST | Chat with Advanced RAG |
|
| 123 |
+
|
| 124 |
+
### 4. Management
|
| 125 |
+
|
| 126 |
+
| Endpoint | Method | Description |
|
| 127 |
+
|----------|--------|-------------|
|
| 128 |
+
| `/documents/pdf` | GET | List all PDFs |
|
| 129 |
+
| `/documents/pdf/{id}` | DELETE | Delete PDF document |
|
| 130 |
+
| `/delete/{doc_id}` | DELETE | Delete document |
|
| 131 |
+
| `/document/{doc_id}` | GET | Get document by ID |
|
| 132 |
+
| `/history` | GET | Get chat history |
|
| 133 |
+
| `/stats` | GET | Collection statistics |
|
| 134 |
+
| `/` | GET | Health check + API docs |
|
| 135 |
+
|
| 136 |
+
---
|
| 137 |
+
|
| 138 |
+
## Use Cases & Recommendations
|
| 139 |
+
|
| 140 |
+
### Case 1: PDF Hướng Dẫn Chỉ Có Text
|
| 141 |
+
|
| 142 |
+
**Scenario:** FAQ, policy document, text guide
|
| 143 |
+
|
| 144 |
+
**Solution:** `/upload-pdf`
|
| 145 |
+
|
| 146 |
+
```bash
|
| 147 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 148 |
+
-F "[email protected]" \
|
| 149 |
+
-F "title=FAQ"
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
### Case 2: PDF Hướng Dẫn Có Hình Ảnh ⭐ (Your Case)
|
| 153 |
+
|
| 154 |
+
**Scenario:** User guide với screenshots, tutorial với diagrams
|
| 155 |
+
|
| 156 |
+
**Solution:** `/upload-pdf-multimodal`
|
| 157 |
+
|
| 158 |
+
```bash
|
| 159 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
|
| 160 |
+
-F "file=@user_guide_with_images.pdf" \
|
| 161 |
+
-F "title=User Guide" \
|
| 162 |
+
-F "category=guide"
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
**Benefits:**
|
| 166 |
+
- ✓ Extract text + image URLs
|
| 167 |
+
- ✓ Link images với text chunks
|
| 168 |
+
- ✓ Chatbot return images in response
|
| 169 |
+
- ✓ Visual context for users
|
| 170 |
+
|
| 171 |
+
### Case 3: Multiple Social Media Posts
|
| 172 |
+
|
| 173 |
+
**Scenario:** Index nhiều posts với texts và images
|
| 174 |
+
|
| 175 |
+
**Solution:** `/index` with multiple inputs
|
| 176 |
+
|
| 177 |
+
```python
|
| 178 |
+
data = {
|
| 179 |
+
'id': 'post123',
|
| 180 |
+
'texts': ['Post text 1', 'Post text 2', ...], # Max 10
|
| 181 |
+
}
|
| 182 |
+
files = [
|
| 183 |
+
('images', open('img1.jpg', 'rb')),
|
| 184 |
+
('images', open('img2.jpg', 'rb')), # Max 10
|
| 185 |
+
]
|
| 186 |
+
requests.post('http://localhost:8000/index', data=data, files=files)
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
### Case 4: Complex Queries
|
| 190 |
+
|
| 191 |
+
**Scenario:** Câu hỏi phức tạp, cần độ chính xác cao
|
| 192 |
+
|
| 193 |
+
**Solution:** Advanced RAG with full options
|
| 194 |
+
|
| 195 |
+
```python
|
| 196 |
+
{
|
| 197 |
+
'message': 'Complex question',
|
| 198 |
+
'use_rag': True,
|
| 199 |
+
'use_advanced_rag': True,
|
| 200 |
+
'use_reranking': True,
|
| 201 |
+
'use_compression': True,
|
| 202 |
+
'score_threshold': 0.5,
|
| 203 |
+
'top_k': 5
|
| 204 |
+
}
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
---
|
| 208 |
+
|
| 209 |
+
## Workflow Đề Xuất Cho Bạn
|
| 210 |
+
|
| 211 |
+
### Setup Ban Đầu
|
| 212 |
+
|
| 213 |
+
1. **Tạo PDF hướng dẫn sử dụng**
|
| 214 |
+
- Dùng template: `chatbot_guide_template.md`
|
| 215 |
+
- Customize nội dung cho hệ thống của bạn
|
| 216 |
+
- Thêm image URLs (screenshots, diagrams)
|
| 217 |
+
- Convert to PDF: `pandoc template.md -o guide.pdf`
|
| 218 |
+
|
| 219 |
+
2. **Upload PDF**
|
| 220 |
+
```bash
|
| 221 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
|
| 222 |
+
-F "file=@chatbot_user_guide.pdf" \
|
| 223 |
+
-F "title=Hướng dẫn sử dụng ChatbotRAG" \
|
| 224 |
+
-F "category=user_guide"
|
| 225 |
+
```
|
| 226 |
+
|
| 227 |
+
3. **Verify**
|
| 228 |
+
```bash
|
| 229 |
+
curl http://localhost:8000/documents/pdf
|
| 230 |
+
# Check "type": "multimodal_pdf" và "total_images"
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
### Sử Dụng Hàng Ngày
|
| 234 |
+
|
| 235 |
+
1. **Chat với user**
|
| 236 |
+
```python
|
| 237 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 238 |
+
'message': user_question,
|
| 239 |
+
'use_rag': True,
|
| 240 |
+
'use_advanced_rag': True,
|
| 241 |
+
'hf_token': 'your_token'
|
| 242 |
+
})
|
| 243 |
+
```
|
| 244 |
+
|
| 245 |
+
2. **Display response + images**
|
| 246 |
+
```python
|
| 247 |
+
# Text answer
|
| 248 |
+
print(response.json()['response'])
|
| 249 |
+
|
| 250 |
+
# Images (if any)
|
| 251 |
+
for ctx in response.json()['context_used']:
|
| 252 |
+
if ctx['metadata'].get('has_images'):
|
| 253 |
+
for url in ctx['metadata']['image_urls']:
|
| 254 |
+
# Display image in your UI
|
| 255 |
+
print(f"Image: {url}")
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### Cập Nhật Content
|
| 259 |
+
|
| 260 |
+
1. **Update PDF** - Edit và re-export
|
| 261 |
+
2. **Xóa PDF cũ**
|
| 262 |
+
```bash
|
| 263 |
+
curl -X DELETE http://localhost:8000/documents/pdf/old_doc_id
|
| 264 |
+
```
|
| 265 |
+
3. **Upload PDF mới**
|
| 266 |
+
```bash
|
| 267 |
+
curl -X POST http://localhost:8000/upload-pdf-multimodal -F "file=@new_guide.pdf"
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
---
|
| 271 |
+
|
| 272 |
+
## Performance Tips
|
| 273 |
+
|
| 274 |
+
### 1. Chunking
|
| 275 |
+
|
| 276 |
+
**Default:**
|
| 277 |
+
- chunk_size: 500 words
|
| 278 |
+
- chunk_overlap: 50 words
|
| 279 |
+
|
| 280 |
+
**Tối ưu:**
|
| 281 |
+
```python
|
| 282 |
+
# In multimodal_pdf_parser.py
|
| 283 |
+
parser = MultimodalPDFParser(
|
| 284 |
+
chunk_size=400, # Shorter for faster retrieval
|
| 285 |
+
chunk_overlap=40,
|
| 286 |
+
min_chunk_size=50
|
| 287 |
+
)
|
| 288 |
+
```
|
| 289 |
+
|
| 290 |
+
### 2. Retrieval
|
| 291 |
+
|
| 292 |
+
**Settings tốt:**
|
| 293 |
+
```python
|
| 294 |
+
{
|
| 295 |
+
'top_k': 5, # 3-7 is optimal
|
| 296 |
+
'score_threshold': 0.5, # 0.4-0.6 is good
|
| 297 |
+
'use_reranking': True, # Always enable
|
| 298 |
+
'use_compression': True # Keeps context relevant
|
| 299 |
+
}
|
| 300 |
+
```
|
| 301 |
+
|
| 302 |
+
### 3. LLM
|
| 303 |
+
|
| 304 |
+
**For factual answers:**
|
| 305 |
+
```python
|
| 306 |
+
{
|
| 307 |
+
'temperature': 0.3, # Low for accuracy
|
| 308 |
+
'max_tokens': 512, # Concise answers
|
| 309 |
+
'top_p': 0.9
|
| 310 |
+
}
|
| 311 |
+
```
|
| 312 |
+
|
| 313 |
+
---
|
| 314 |
+
|
| 315 |
+
## Troubleshooting
|
| 316 |
+
|
| 317 |
+
### Issue 1: Images không được detect
|
| 318 |
+
|
| 319 |
+
**Solution:**
|
| 320 |
+
- Verify PDF có image URLs (http://, https://)
|
| 321 |
+
- Check format: markdown `` hoặc HTML `<img src>`
|
| 322 |
+
- Test regex:
|
| 323 |
+
```python
|
| 324 |
+
from multimodal_pdf_parser import MultimodalPDFParser
|
| 325 |
+
parser = MultimodalPDFParser()
|
| 326 |
+
urls = parser.extract_image_urls("")
|
| 327 |
+
print(urls) # Should return ['https://example.com/img.png']
|
| 328 |
+
```
|
| 329 |
+
|
| 330 |
+
### Issue 2: Chatbot không tìm thấy thông tin
|
| 331 |
+
|
| 332 |
+
**Solution:**
|
| 333 |
+
- Lower score_threshold: `0.3-0.5`
|
| 334 |
+
- Increase top_k: `5-10`
|
| 335 |
+
- Enable Advanced RAG
|
| 336 |
+
- Rephrase question
|
| 337 |
+
|
| 338 |
+
### Issue 3: Response quá chậm
|
| 339 |
+
|
| 340 |
+
**Solution:**
|
| 341 |
+
- Giảm top_k
|
| 342 |
+
- Disable compression nếu không cần
|
| 343 |
+
- Use basic RAG thay vì advanced for simple queries
|
| 344 |
+
|
| 345 |
+
---
|
| 346 |
+
|
| 347 |
+
## Next Steps
|
| 348 |
+
|
| 349 |
+
### Immediate (Bây Giờ)
|
| 350 |
+
|
| 351 |
+
1. ✓ System đã ready!
|
| 352 |
+
2. Tạo PDF hướng dẫn của bạn
|
| 353 |
+
3. Upload qua `/upload-pdf-multimodal`
|
| 354 |
+
4. Test với câu hỏi thực tế
|
| 355 |
+
|
| 356 |
+
### Short Term (1-2 tuần)
|
| 357 |
+
|
| 358 |
+
1. Collect user feedback
|
| 359 |
+
2. Fine-tune parameters (top_k, threshold)
|
| 360 |
+
3. Add more PDFs (FAQ, tutorials, etc.)
|
| 361 |
+
4. Monitor chat history để improve content
|
| 362 |
+
|
| 363 |
+
### Long Term (Sau này)
|
| 364 |
+
|
| 365 |
+
1. **Hybrid Search với BM25**
|
| 366 |
+
- Combine dense + sparse retrieval
|
| 367 |
+
- Better for keyword queries
|
| 368 |
+
|
| 369 |
+
2. **Cross-Encoder Reranking**
|
| 370 |
+
- Replace embedding similarity
|
| 371 |
+
- More accurate ranking
|
| 372 |
+
|
| 373 |
+
3. **Image Processing**
|
| 374 |
+
- Download và process actual images
|
| 375 |
+
- Use Jina CLIP for image embeddings
|
| 376 |
+
- True multimodal embeddings (text + image vectors)
|
| 377 |
+
|
| 378 |
+
4. **RAG-Anything Integration** (Nếu cần)
|
| 379 |
+
- For complex PDFs with tables, charts
|
| 380 |
+
- Vision encoder for embedded images
|
| 381 |
+
- Advanced document understanding
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
## Comparison Matrix
|
| 386 |
+
|
| 387 |
+
| Approach | Text | Images | URLs | Complexity | Your Case |
|
| 388 |
+
|----------|------|--------|------|------------|-----------|
|
| 389 |
+
| Basic RAG | ✓ | ✗ | ✗ | Low | ✗ |
|
| 390 |
+
| PDF Parser | ✓ | ✗ | ✗ | Low | ✗ |
|
| 391 |
+
| **Multimodal PDF** | ✓ | ✗ | ✓ | **Medium** | **✓** |
|
| 392 |
+
| RAG-Anything | ✓ | ✓ | ✓ | High | Overkill |
|
| 393 |
+
|
| 394 |
+
**Recommendation:** **Multimodal PDF** là perfect cho case của bạn!
|
| 395 |
+
|
| 396 |
+
---
|
| 397 |
+
|
| 398 |
+
## Kết Luận
|
| 399 |
+
|
| 400 |
+
### Bạn Có Gì?
|
| 401 |
+
|
| 402 |
+
✅ **Multiple Inputs**: Index 10 texts + 10 images
|
| 403 |
+
✅ **Advanced RAG**: Query expansion, reranking, compression
|
| 404 |
+
✅ **PDF Support**: Parse và index PDFs
|
| 405 |
+
✅ **Multimodal PDF**: Extract text + image URLs, link together
|
| 406 |
+
✅ **Complete Documentation**: Guides, examples, troubleshooting
|
| 407 |
+
|
| 408 |
+
### Làm Gì Tiếp?
|
| 409 |
+
|
| 410 |
+
1. **Tạo PDF** hướng dẫn với nội dung của bạn (có image URLs)
|
| 411 |
+
2. **Upload** qua `/upload-pdf-multimodal`
|
| 412 |
+
3. **Test** với câu hỏi thực tế
|
| 413 |
+
4. **Iterate** - fine-tune based on feedback
|
| 414 |
+
|
| 415 |
+
### Files Cần Đọc
|
| 416 |
+
|
| 417 |
+
**Cho PDF với hình ảnh (Your case):**
|
| 418 |
+
- [MULTIMODAL_PDF_GUIDE.md](MULTIMODAL_PDF_GUIDE.md) ⭐⭐⭐
|
| 419 |
+
- [PDF_RAG_GUIDE.md](PDF_RAG_GUIDE.md)
|
| 420 |
+
|
| 421 |
+
**Cho Advanced RAG:**
|
| 422 |
+
- [ADVANCED_RAG_GUIDE.md](ADVANCED_RAG_GUIDE.md)
|
| 423 |
+
|
| 424 |
+
**Quick Start:**
|
| 425 |
+
- [QUICK_START_PDF.md](QUICK_START_PDF.md)
|
| 426 |
+
|
| 427 |
+
---
|
| 428 |
+
|
| 429 |
+
**Hệ thống của bạn bây giờ rất mạnh! Chỉ cần upload PDF và chat thôi! 🚀📄🤖**
|
advanced_rag.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Advanced RAG techniques for improved retrieval and generation
|
| 3 |
+
Includes: Query Expansion, Reranking, Contextual Compression, Hybrid Search
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import List, Dict, Optional, Tuple
|
| 7 |
+
import numpy as np
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class RetrievedDocument:
|
| 14 |
+
"""Document retrieved from vector database"""
|
| 15 |
+
id: str
|
| 16 |
+
text: str
|
| 17 |
+
confidence: float
|
| 18 |
+
metadata: Dict
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class AdvancedRAG:
|
| 22 |
+
"""Advanced RAG system with modern techniques"""
|
| 23 |
+
|
| 24 |
+
def __init__(self, embedding_service, qdrant_service):
|
| 25 |
+
self.embedding_service = embedding_service
|
| 26 |
+
self.qdrant_service = qdrant_service
|
| 27 |
+
|
| 28 |
+
def expand_query(self, query: str) -> List[str]:
|
| 29 |
+
"""
|
| 30 |
+
Expand query with related terms and variations
|
| 31 |
+
Simple rule-based expansion for Vietnamese queries
|
| 32 |
+
"""
|
| 33 |
+
queries = [query]
|
| 34 |
+
|
| 35 |
+
# Add query variations
|
| 36 |
+
# Remove question words for alternative search
|
| 37 |
+
question_words = ['ai', 'gì', 'nào', 'đâu', 'khi nào', 'như thế nào',
|
| 38 |
+
'tại sao', 'có', 'là', 'được', 'không']
|
| 39 |
+
|
| 40 |
+
query_lower = query.lower()
|
| 41 |
+
for qw in question_words:
|
| 42 |
+
if qw in query_lower:
|
| 43 |
+
variant = query_lower.replace(qw, '').strip()
|
| 44 |
+
if variant and variant != query_lower:
|
| 45 |
+
queries.append(variant)
|
| 46 |
+
|
| 47 |
+
# Extract key nouns/phrases (simple approach)
|
| 48 |
+
words = query.split()
|
| 49 |
+
if len(words) > 3:
|
| 50 |
+
# Take important words (skip first question word)
|
| 51 |
+
key_phrases = ' '.join(words[1:]) if words[0].lower() in question_words else ' '.join(words[:3])
|
| 52 |
+
if key_phrases not in queries:
|
| 53 |
+
queries.append(key_phrases)
|
| 54 |
+
|
| 55 |
+
return queries[:3] # Return top 3 variations
|
| 56 |
+
|
| 57 |
+
def multi_query_retrieval(
|
| 58 |
+
self,
|
| 59 |
+
query: str,
|
| 60 |
+
top_k: int = 5,
|
| 61 |
+
score_threshold: float = 0.5
|
| 62 |
+
) -> List[RetrievedDocument]:
|
| 63 |
+
"""
|
| 64 |
+
Retrieve documents using multiple query variations
|
| 65 |
+
Combines results from all query variations
|
| 66 |
+
"""
|
| 67 |
+
expanded_queries = self.expand_query(query)
|
| 68 |
+
|
| 69 |
+
all_results = {} # Use dict to deduplicate by doc_id
|
| 70 |
+
|
| 71 |
+
for q in expanded_queries:
|
| 72 |
+
# Generate embedding for each query variant
|
| 73 |
+
query_embedding = self.embedding_service.encode_text(q)
|
| 74 |
+
|
| 75 |
+
# Search in Qdrant
|
| 76 |
+
results = self.qdrant_service.search(
|
| 77 |
+
query_embedding=query_embedding,
|
| 78 |
+
limit=top_k,
|
| 79 |
+
score_threshold=score_threshold
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Add to results (keep highest score for duplicates)
|
| 83 |
+
for result in results:
|
| 84 |
+
doc_id = result["id"]
|
| 85 |
+
if doc_id not in all_results or result["confidence"] > all_results[doc_id].confidence:
|
| 86 |
+
all_results[doc_id] = RetrievedDocument(
|
| 87 |
+
id=doc_id,
|
| 88 |
+
text=result["metadata"].get("text", ""),
|
| 89 |
+
confidence=result["confidence"],
|
| 90 |
+
metadata=result["metadata"]
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Sort by confidence and return top_k
|
| 94 |
+
sorted_results = sorted(all_results.values(), key=lambda x: x.confidence, reverse=True)
|
| 95 |
+
return sorted_results[:top_k]
|
| 96 |
+
|
| 97 |
+
def rerank_documents(
|
| 98 |
+
self,
|
| 99 |
+
query: str,
|
| 100 |
+
documents: List[RetrievedDocument],
|
| 101 |
+
use_cross_encoder: bool = False
|
| 102 |
+
) -> List[RetrievedDocument]:
|
| 103 |
+
"""
|
| 104 |
+
Rerank documents based on semantic similarity
|
| 105 |
+
Simple reranking using embedding similarity (can be upgraded to cross-encoder)
|
| 106 |
+
"""
|
| 107 |
+
if not documents:
|
| 108 |
+
return documents
|
| 109 |
+
|
| 110 |
+
# Simple reranking: recalculate similarity with original query
|
| 111 |
+
query_embedding = self.embedding_service.encode_text(query)
|
| 112 |
+
|
| 113 |
+
reranked = []
|
| 114 |
+
for doc in documents:
|
| 115 |
+
# Get document embedding
|
| 116 |
+
doc_embedding = self.embedding_service.encode_text(doc.text)
|
| 117 |
+
|
| 118 |
+
# Calculate cosine similarity
|
| 119 |
+
similarity = np.dot(query_embedding.flatten(), doc_embedding.flatten())
|
| 120 |
+
|
| 121 |
+
# Combine with original confidence (weighted average)
|
| 122 |
+
new_score = 0.6 * similarity + 0.4 * doc.confidence
|
| 123 |
+
|
| 124 |
+
reranked.append(RetrievedDocument(
|
| 125 |
+
id=doc.id,
|
| 126 |
+
text=doc.text,
|
| 127 |
+
confidence=float(new_score),
|
| 128 |
+
metadata=doc.metadata
|
| 129 |
+
))
|
| 130 |
+
|
| 131 |
+
# Sort by new score
|
| 132 |
+
reranked.sort(key=lambda x: x.confidence, reverse=True)
|
| 133 |
+
return reranked
|
| 134 |
+
|
| 135 |
+
def compress_context(
|
| 136 |
+
self,
|
| 137 |
+
query: str,
|
| 138 |
+
documents: List[RetrievedDocument],
|
| 139 |
+
max_tokens: int = 500
|
| 140 |
+
) -> List[RetrievedDocument]:
|
| 141 |
+
"""
|
| 142 |
+
Compress context to most relevant parts
|
| 143 |
+
Remove redundant information and keep only relevant sentences
|
| 144 |
+
"""
|
| 145 |
+
compressed_docs = []
|
| 146 |
+
|
| 147 |
+
for doc in documents:
|
| 148 |
+
# Split into sentences
|
| 149 |
+
sentences = self._split_sentences(doc.text)
|
| 150 |
+
|
| 151 |
+
# Score each sentence based on relevance to query
|
| 152 |
+
scored_sentences = []
|
| 153 |
+
query_words = set(query.lower().split())
|
| 154 |
+
|
| 155 |
+
for sent in sentences:
|
| 156 |
+
sent_words = set(sent.lower().split())
|
| 157 |
+
# Simple relevance: word overlap
|
| 158 |
+
overlap = len(query_words & sent_words)
|
| 159 |
+
if overlap > 0:
|
| 160 |
+
scored_sentences.append((sent, overlap))
|
| 161 |
+
|
| 162 |
+
# Sort by relevance and take top sentences
|
| 163 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
| 164 |
+
|
| 165 |
+
# Reconstruct compressed text (up to max_tokens)
|
| 166 |
+
compressed_text = ""
|
| 167 |
+
word_count = 0
|
| 168 |
+
for sent, score in scored_sentences:
|
| 169 |
+
sent_words = len(sent.split())
|
| 170 |
+
if word_count + sent_words <= max_tokens:
|
| 171 |
+
compressed_text += sent + " "
|
| 172 |
+
word_count += sent_words
|
| 173 |
+
else:
|
| 174 |
+
break
|
| 175 |
+
|
| 176 |
+
# If nothing selected, take original first part
|
| 177 |
+
if not compressed_text.strip():
|
| 178 |
+
compressed_text = doc.text[:max_tokens * 5] # Rough estimate
|
| 179 |
+
|
| 180 |
+
compressed_docs.append(RetrievedDocument(
|
| 181 |
+
id=doc.id,
|
| 182 |
+
text=compressed_text.strip(),
|
| 183 |
+
confidence=doc.confidence,
|
| 184 |
+
metadata=doc.metadata
|
| 185 |
+
))
|
| 186 |
+
|
| 187 |
+
return compressed_docs
|
| 188 |
+
|
| 189 |
+
def _split_sentences(self, text: str) -> List[str]:
|
| 190 |
+
"""Split text into sentences (Vietnamese-aware)"""
|
| 191 |
+
# Simple sentence splitter
|
| 192 |
+
sentences = re.split(r'[.!?]+', text)
|
| 193 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 194 |
+
|
| 195 |
+
def hybrid_rag_pipeline(
|
| 196 |
+
self,
|
| 197 |
+
query: str,
|
| 198 |
+
top_k: int = 5,
|
| 199 |
+
score_threshold: float = 0.5,
|
| 200 |
+
use_reranking: bool = True,
|
| 201 |
+
use_compression: bool = True,
|
| 202 |
+
max_context_tokens: int = 500
|
| 203 |
+
) -> Tuple[List[RetrievedDocument], Dict]:
|
| 204 |
+
"""
|
| 205 |
+
Complete advanced RAG pipeline
|
| 206 |
+
1. Multi-query retrieval
|
| 207 |
+
2. Reranking
|
| 208 |
+
3. Contextual compression
|
| 209 |
+
"""
|
| 210 |
+
stats = {
|
| 211 |
+
"original_query": query,
|
| 212 |
+
"expanded_queries": [],
|
| 213 |
+
"initial_results": 0,
|
| 214 |
+
"after_rerank": 0,
|
| 215 |
+
"after_compression": 0
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
# Step 1: Multi-query retrieval
|
| 219 |
+
expanded_queries = self.expand_query(query)
|
| 220 |
+
stats["expanded_queries"] = expanded_queries
|
| 221 |
+
|
| 222 |
+
documents = self.multi_query_retrieval(
|
| 223 |
+
query=query,
|
| 224 |
+
top_k=top_k * 2, # Get more candidates for reranking
|
| 225 |
+
score_threshold=score_threshold
|
| 226 |
+
)
|
| 227 |
+
stats["initial_results"] = len(documents)
|
| 228 |
+
|
| 229 |
+
# Step 2: Reranking (optional)
|
| 230 |
+
if use_reranking and documents:
|
| 231 |
+
documents = self.rerank_documents(query, documents)
|
| 232 |
+
documents = documents[:top_k] # Keep top_k after reranking
|
| 233 |
+
stats["after_rerank"] = len(documents)
|
| 234 |
+
|
| 235 |
+
# Step 3: Contextual compression (optional)
|
| 236 |
+
if use_compression and documents:
|
| 237 |
+
documents = self.compress_context(
|
| 238 |
+
query=query,
|
| 239 |
+
documents=documents,
|
| 240 |
+
max_tokens=max_context_tokens
|
| 241 |
+
)
|
| 242 |
+
stats["after_compression"] = len(documents)
|
| 243 |
+
|
| 244 |
+
return documents, stats
|
| 245 |
+
|
| 246 |
+
def format_context_for_llm(
|
| 247 |
+
self,
|
| 248 |
+
documents: List[RetrievedDocument],
|
| 249 |
+
include_metadata: bool = True
|
| 250 |
+
) -> str:
|
| 251 |
+
"""
|
| 252 |
+
Format retrieved documents into context string for LLM
|
| 253 |
+
Uses better structure for improved LLM understanding
|
| 254 |
+
"""
|
| 255 |
+
if not documents:
|
| 256 |
+
return ""
|
| 257 |
+
|
| 258 |
+
context_parts = ["RELEVANT CONTEXT:\n"]
|
| 259 |
+
|
| 260 |
+
for i, doc in enumerate(documents, 1):
|
| 261 |
+
context_parts.append(f"\n--- Document {i} (Relevance: {doc.confidence:.2%}) ---")
|
| 262 |
+
context_parts.append(doc.text)
|
| 263 |
+
|
| 264 |
+
if include_metadata and doc.metadata:
|
| 265 |
+
# Add useful metadata
|
| 266 |
+
meta_str = []
|
| 267 |
+
for key, value in doc.metadata.items():
|
| 268 |
+
if key not in ['text', 'texts'] and value:
|
| 269 |
+
meta_str.append(f"{key}: {value}")
|
| 270 |
+
if meta_str:
|
| 271 |
+
context_parts.append(f"[Metadata: {', '.join(meta_str)}]")
|
| 272 |
+
|
| 273 |
+
context_parts.append("\n--- End of Context ---\n")
|
| 274 |
+
return "\n".join(context_parts)
|
| 275 |
+
|
| 276 |
+
def build_rag_prompt(
|
| 277 |
+
self,
|
| 278 |
+
query: str,
|
| 279 |
+
context: str,
|
| 280 |
+
system_message: str = "You are a helpful AI assistant."
|
| 281 |
+
) -> str:
|
| 282 |
+
"""
|
| 283 |
+
Build optimized RAG prompt for LLM
|
| 284 |
+
Uses best practices for prompt engineering
|
| 285 |
+
"""
|
| 286 |
+
prompt_template = f"""{system_message}
|
| 287 |
+
|
| 288 |
+
{context}
|
| 289 |
+
|
| 290 |
+
INSTRUCTIONS:
|
| 291 |
+
1. Answer the user's question using ONLY the information provided in the context above
|
| 292 |
+
2. If the context doesn't contain relevant information, say "Tôi không tìm thấy thông tin liên quan trong dữ liệu."
|
| 293 |
+
3. Cite relevant parts of the context when answering
|
| 294 |
+
4. Be concise and accurate
|
| 295 |
+
5. Answer in Vietnamese if the question is in Vietnamese
|
| 296 |
+
|
| 297 |
+
USER QUESTION: {query}
|
| 298 |
+
|
| 299 |
+
YOUR ANSWER:"""
|
| 300 |
+
|
| 301 |
+
return prompt_template
|
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face Spaces compatible app
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from main import app as fastapi_app
|
| 7 |
+
|
| 8 |
+
# Gradio wrapper cho Hugging Face Spaces
|
| 9 |
+
def create_gradio_interface():
|
| 10 |
+
"""
|
| 11 |
+
Tạo Gradio interface để deploy trên Hugging Face Spaces
|
| 12 |
+
"""
|
| 13 |
+
with gr.Blocks(title="Event Social Media Embeddings API") as demo:
|
| 14 |
+
gr.Markdown("""
|
| 15 |
+
# 🔍 Event Social Media Embeddings API
|
| 16 |
+
|
| 17 |
+
API để embeddings và search multimodal (text + images) với **Jina CLIP v2** + **Qdrant Cloud**
|
| 18 |
+
|
| 19 |
+
## 🌟 Features:
|
| 20 |
+
- ✅ Multimodal: Text + Image embeddings
|
| 21 |
+
- ✅ Tiếng Việt: 100% support
|
| 22 |
+
- ✅ High Performance: ONNX + HNSW
|
| 23 |
+
- ✅ Cloud: Qdrant Cloud
|
| 24 |
+
|
| 25 |
+
## 📡 API Endpoints:
|
| 26 |
+
- `POST /index` - Index data
|
| 27 |
+
- `POST /search` - Hybrid search
|
| 28 |
+
- `POST /search/text` - Text search
|
| 29 |
+
- `POST /search/image` - Image search
|
| 30 |
+
|
| 31 |
+
### 🔗 API Docs:
|
| 32 |
+
Truy cập `/docs` để xem API documentation đầy đủ
|
| 33 |
+
""")
|
| 34 |
+
|
| 35 |
+
gr.Markdown("### API is running at the `/docs` endpoint")
|
| 36 |
+
|
| 37 |
+
return demo
|
| 38 |
+
|
| 39 |
+
# Mount FastAPI app
|
| 40 |
+
demo = create_gradio_interface()
|
| 41 |
+
|
| 42 |
+
# Wrap FastAPI với Gradio
|
| 43 |
+
app = gr.mount_gradio_app(fastapi_app, demo, path="/")
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
import uvicorn
|
| 47 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
batch_index_pdfs.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Batch script to index PDF files into RAG knowledge base
|
| 3 |
+
Usage: python batch_index_pdfs.py <pdf_directory> [options]
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from pymongo import MongoClient
|
| 10 |
+
from embedding_service import JinaClipEmbeddingService
|
| 11 |
+
from qdrant_service import QdrantVectorService
|
| 12 |
+
from pdf_parser import PDFIndexer
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def index_pdf_directory(
|
| 16 |
+
pdf_dir: str,
|
| 17 |
+
category: str = "user_guide",
|
| 18 |
+
force: bool = False
|
| 19 |
+
):
|
| 20 |
+
"""
|
| 21 |
+
Index all PDF files in a directory
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
pdf_dir: Directory containing PDF files
|
| 25 |
+
category: Category for the PDFs (default: "user_guide")
|
| 26 |
+
force: Force reindex even if already indexed (default: False)
|
| 27 |
+
"""
|
| 28 |
+
print("="*60)
|
| 29 |
+
print("PDF Batch Indexer")
|
| 30 |
+
print("="*60)
|
| 31 |
+
|
| 32 |
+
# Initialize services (same as main.py)
|
| 33 |
+
print("\n[1/5] Initializing services...")
|
| 34 |
+
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
|
| 35 |
+
|
| 36 |
+
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
|
| 37 |
+
qdrant_service = QdrantVectorService(
|
| 38 |
+
collection_name=collection_name,
|
| 39 |
+
vector_size=embedding_service.get_embedding_dimension()
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# MongoDB
|
| 43 |
+
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:[email protected]/")
|
| 44 |
+
mongo_client = MongoClient(mongodb_uri)
|
| 45 |
+
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
|
| 46 |
+
documents_collection = db["documents"]
|
| 47 |
+
|
| 48 |
+
# Initialize PDF indexer
|
| 49 |
+
pdf_indexer = PDFIndexer(
|
| 50 |
+
embedding_service=embedding_service,
|
| 51 |
+
qdrant_service=qdrant_service,
|
| 52 |
+
documents_collection=documents_collection
|
| 53 |
+
)
|
| 54 |
+
print("✓ Services initialized")
|
| 55 |
+
|
| 56 |
+
# Find all PDF files
|
| 57 |
+
print(f"\n[2/5] Scanning directory: {pdf_dir}")
|
| 58 |
+
pdf_files = list(Path(pdf_dir).glob("*.pdf"))
|
| 59 |
+
|
| 60 |
+
if not pdf_files:
|
| 61 |
+
print("✗ No PDF files found in directory")
|
| 62 |
+
return
|
| 63 |
+
|
| 64 |
+
print(f"✓ Found {len(pdf_files)} PDF file(s)")
|
| 65 |
+
|
| 66 |
+
# Index each PDF
|
| 67 |
+
print(f"\n[3/5] Indexing PDFs...")
|
| 68 |
+
indexed_count = 0
|
| 69 |
+
skipped_count = 0
|
| 70 |
+
error_count = 0
|
| 71 |
+
|
| 72 |
+
for i, pdf_path in enumerate(pdf_files, 1):
|
| 73 |
+
print(f"\n--- [{i}/{len(pdf_files)}] Processing: {pdf_path.name} ---")
|
| 74 |
+
|
| 75 |
+
# Generate document ID
|
| 76 |
+
doc_id = f"pdf_{pdf_path.stem}"
|
| 77 |
+
|
| 78 |
+
# Check if already indexed
|
| 79 |
+
if not force:
|
| 80 |
+
existing = documents_collection.find_one({"document_id": doc_id})
|
| 81 |
+
if existing:
|
| 82 |
+
print(f"⊘ Already indexed (use --force to reindex)")
|
| 83 |
+
skipped_count += 1
|
| 84 |
+
continue
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Index PDF
|
| 88 |
+
metadata = {
|
| 89 |
+
'title': pdf_path.stem.replace('_', ' ').title(),
|
| 90 |
+
'category': category,
|
| 91 |
+
'source_file': str(pdf_path)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
result = pdf_indexer.index_pdf(
|
| 95 |
+
pdf_path=str(pdf_path),
|
| 96 |
+
document_id=doc_id,
|
| 97 |
+
document_metadata=metadata
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
print(f"✓ Indexed: {result['chunks_indexed']} chunks")
|
| 101 |
+
indexed_count += 1
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"✗ Error: {str(e)}")
|
| 105 |
+
error_count += 1
|
| 106 |
+
|
| 107 |
+
# Summary
|
| 108 |
+
print("\n" + "="*60)
|
| 109 |
+
print("SUMMARY")
|
| 110 |
+
print("="*60)
|
| 111 |
+
print(f"Total PDFs found: {len(pdf_files)}")
|
| 112 |
+
print(f"✓ Successfully indexed: {indexed_count}")
|
| 113 |
+
print(f"⊘ Skipped (already indexed): {skipped_count}")
|
| 114 |
+
print(f"✗ Errors: {error_count}")
|
| 115 |
+
|
| 116 |
+
if indexed_count > 0:
|
| 117 |
+
print(f"\n✓ Knowledge base updated successfully!")
|
| 118 |
+
print(f"You can now chat with your chatbot about the content in these PDFs.")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def main():
|
| 122 |
+
"""Main entry point"""
|
| 123 |
+
if len(sys.argv) < 2:
|
| 124 |
+
print("Usage: python batch_index_pdfs.py <pdf_directory> [--category=<category>] [--force]")
|
| 125 |
+
print("\nExample:")
|
| 126 |
+
print(" python batch_index_pdfs.py ./docs/guides")
|
| 127 |
+
print(" python batch_index_pdfs.py ./docs/guides --category=user_guide --force")
|
| 128 |
+
sys.exit(1)
|
| 129 |
+
|
| 130 |
+
pdf_dir = sys.argv[1]
|
| 131 |
+
|
| 132 |
+
if not os.path.isdir(pdf_dir):
|
| 133 |
+
print(f"Error: Directory not found: {pdf_dir}")
|
| 134 |
+
sys.exit(1)
|
| 135 |
+
|
| 136 |
+
# Parse options
|
| 137 |
+
category = "user_guide"
|
| 138 |
+
force = False
|
| 139 |
+
|
| 140 |
+
for arg in sys.argv[2:]:
|
| 141 |
+
if arg.startswith("--category="):
|
| 142 |
+
category = arg.split("=")[1]
|
| 143 |
+
elif arg == "--force":
|
| 144 |
+
force = True
|
| 145 |
+
|
| 146 |
+
# Index PDFs
|
| 147 |
+
index_pdf_directory(pdf_dir, category=category, force=force)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
main()
|
chatbot_guide_template.md
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hướng Dẫn Sử Dụng ChatbotRAG
|
| 2 |
+
|
| 3 |
+
*Version 2.0 - Tháng 10, 2025*
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 1. Giới Thiệu
|
| 8 |
+
|
| 9 |
+
### ChatbotRAG là gì?
|
| 10 |
+
|
| 11 |
+
ChatbotRAG là hệ thống chatbot thông minh sử dụng công nghệ RAG (Retrieval-Augmented Generation) để trả lời câu hỏi dựa trên cơ sở dữ liệu kiến thức của bạn.
|
| 12 |
+
|
| 13 |
+
### Tính năng chính
|
| 14 |
+
|
| 15 |
+
- **Multimodal Search**: Tìm kiếm bằng text và hình ảnh
|
| 16 |
+
- **Advanced RAG**: Query expansion, reranking, context compression
|
| 17 |
+
- **PDF Support**: Upload PDF và chat về nội dung trong PDF
|
| 18 |
+
- **Multiple Inputs**: Index nhiều texts và images cùng lúc (tối đa 10 mỗi loại)
|
| 19 |
+
- **Chat History**: Lưu lịch sử chat để theo dõi
|
| 20 |
+
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
## 2. Bắt Đầu Nhanh
|
| 24 |
+
|
| 25 |
+
### Bước 1: Khởi động server
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
cd ChatbotRAG
|
| 29 |
+
python main.py
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
Server sẽ chạy tại: `http://localhost:8000`
|
| 33 |
+
|
| 34 |
+
### Bước 2: Truy cập API Documentation
|
| 35 |
+
|
| 36 |
+
Mở trình duyệt và truy cập:
|
| 37 |
+
- API Docs: `http://localhost:8000/docs`
|
| 38 |
+
- ReDoc: `http://localhost:8000/redoc`
|
| 39 |
+
|
| 40 |
+
### Bước 3: Test với câu hỏi đơn giản
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
curl -X POST "http://localhost:8000/chat" \
|
| 44 |
+
-H "Content-Type: application/json" \
|
| 45 |
+
-d '{"message": "Xin chào, bạn là ai?"}'
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
|
| 50 |
+
## 3. Index Dữ Liệu
|
| 51 |
+
|
| 52 |
+
### 3.1. Index Text Đơn Giản
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
curl -X POST "http://localhost:8000/index" \
|
| 56 |
+
-F "id=doc1" \
|
| 57 |
+
-F "texts=Đây là text nội dung 1" \
|
| 58 |
+
-F "texts=Đây là text nội dung 2"
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
### 3.2. Index Với Images
|
| 62 |
+
|
| 63 |
+
```bash
|
| 64 |
+
curl -X POST "http://localhost:8000/index" \
|
| 65 |
+
-F "id=event123" \
|
| 66 |
+
-F "texts=Sự kiện âm nhạc tại Hà Nội" \
|
| 67 |
+
-F "[email protected]" \
|
| 68 |
+
-F "[email protected]"
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
**Lưu ý**: Tối đa 10 texts và 10 images mỗi request.
|
| 72 |
+
|
| 73 |
+
### 3.3. Upload PDF
|
| 74 |
+
|
| 75 |
+
Để upload tài liệu PDF vào hệ thống:
|
| 76 |
+
|
| 77 |
+
```bash
|
| 78 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 79 |
+
-F "file=@user_guide.pdf" \
|
| 80 |
+
-F "title=Hướng dẫn sử dụng" \
|
| 81 |
+
-F "category=user_guide"
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
Sau khi upload, chatbot có thể trả lời câu hỏi về nội dung trong PDF.
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
## 4. Tìm Kiếm Dữ Liệu
|
| 89 |
+
|
| 90 |
+
### 4.1. Search Bằng Text
|
| 91 |
+
|
| 92 |
+
```bash
|
| 93 |
+
curl -X POST "http://localhost:8000/search/text" \
|
| 94 |
+
-F "text=sự kiện âm nhạc" \
|
| 95 |
+
-F "limit=5"
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### 4.2. Search Bằng Image
|
| 99 |
+
|
| 100 |
+
```bash
|
| 101 |
+
curl -X POST "http://localhost:8000/search/image" \
|
| 102 |
+
-F "image=@query_image.jpg" \
|
| 103 |
+
-F "limit=5"
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
### 4.3. Hybrid Search (Text + Image)
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
curl -X POST "http://localhost:8000/search" \
|
| 110 |
+
-F "text=festival music" \
|
| 111 |
+
-F "[email protected]" \
|
| 112 |
+
-F "text_weight=0.6" \
|
| 113 |
+
-F "image_weight=0.4"
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
## 5. Chat Với Chatbot
|
| 119 |
+
|
| 120 |
+
### 5.1. Chat Cơ Bản (Không RAG)
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
import requests
|
| 124 |
+
|
| 125 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 126 |
+
'message': 'Xin chào!',
|
| 127 |
+
'use_rag': False,
|
| 128 |
+
'hf_token': 'your_huggingface_token'
|
| 129 |
+
})
|
| 130 |
+
|
| 131 |
+
print(response.json()['response'])
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
### 5.2. Chat Với RAG (Recommended)
|
| 135 |
+
|
| 136 |
+
```python
|
| 137 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 138 |
+
'message': 'Festival âm nhạc diễn ra khi nào?',
|
| 139 |
+
'use_rag': True,
|
| 140 |
+
'use_advanced_rag': True,
|
| 141 |
+
'top_k': 5,
|
| 142 |
+
'hf_token': 'your_token'
|
| 143 |
+
})
|
| 144 |
+
|
| 145 |
+
result = response.json()
|
| 146 |
+
print("Answer:", result['response'])
|
| 147 |
+
print("Sources:", result['context_used'])
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
### 5.3. Advanced RAG Options
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
response = requests.post('http://localhost:8000/chat', json={
|
| 154 |
+
'message': 'Câu hỏi của bạn',
|
| 155 |
+
'use_rag': True,
|
| 156 |
+
'use_advanced_rag': True,
|
| 157 |
+
|
| 158 |
+
# Advanced RAG settings
|
| 159 |
+
'use_query_expansion': True, # Mở rộng câu hỏi
|
| 160 |
+
'use_reranking': True, # Rerank kết quả
|
| 161 |
+
'use_compression': True, # Nén context
|
| 162 |
+
'score_threshold': 0.5, # Ngưỡng relevance (0-1)
|
| 163 |
+
'top_k': 5, # Số documents retrieve
|
| 164 |
+
|
| 165 |
+
# LLM settings
|
| 166 |
+
'max_tokens': 512,
|
| 167 |
+
'temperature': 0.7,
|
| 168 |
+
'hf_token': 'your_token'
|
| 169 |
+
})
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
---
|
| 173 |
+
|
| 174 |
+
## 6. Quản Lý Documents
|
| 175 |
+
|
| 176 |
+
### 6.1. Xem Danh Sách Documents
|
| 177 |
+
|
| 178 |
+
```bash
|
| 179 |
+
# Xem stats collection
|
| 180 |
+
curl http://localhost:8000/stats
|
| 181 |
+
|
| 182 |
+
# Xem PDFs
|
| 183 |
+
curl http://localhost:8000/documents/pdf
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
### 6.2. Get Document By ID
|
| 187 |
+
|
| 188 |
+
```bash
|
| 189 |
+
curl http://localhost:8000/document/doc123
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
### 6.3. Xóa Document
|
| 193 |
+
|
| 194 |
+
```bash
|
| 195 |
+
curl -X DELETE http://localhost:8000/delete/doc123
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
### 6.4. Xóa PDF Document
|
| 199 |
+
|
| 200 |
+
```bash
|
| 201 |
+
curl -X DELETE http://localhost:8000/documents/pdf/pdf_20251029_143022
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
---
|
| 205 |
+
|
| 206 |
+
## 7. Câu Hỏi Thường Gặp (FAQ)
|
| 207 |
+
|
| 208 |
+
### Q1: Làm sao để upload PDF vào hệ thống?
|
| 209 |
+
|
| 210 |
+
**A:** Sử dụng endpoint `/upload-pdf`:
|
| 211 |
+
|
| 212 |
+
```bash
|
| 213 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 214 |
+
-F "file=@your_file.pdf" \
|
| 215 |
+
-F "title=Tên tài liệu"
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
### Q2: Chatbot không tìm thấy thông tin phù hợp?
|
| 219 |
+
|
| 220 |
+
**A:** Thử các cách sau:
|
| 221 |
+
1. Giảm `score_threshold` xuống (0.3 - 0.5)
|
| 222 |
+
2. Tăng `top_k` lên (5-10)
|
| 223 |
+
3. Sử dụng `use_advanced_rag=True`
|
| 224 |
+
4. Rephrase câu hỏi rõ ràng hơn
|
| 225 |
+
|
| 226 |
+
### Q3: Làm sao để cải thi��n độ chính xác của chatbot?
|
| 227 |
+
|
| 228 |
+
**A:**
|
| 229 |
+
- Bật Advanced RAG: `use_advanced_rag=True`
|
| 230 |
+
- Bật tất cả RAG features: `use_reranking=True`, `use_compression=True`
|
| 231 |
+
- Index nhiều documents với nội dung chi tiết
|
| 232 |
+
- Sử dụng metadata phù hợp khi index
|
| 233 |
+
|
| 234 |
+
### Q4: Token limit của LLM là bao nhiêu?
|
| 235 |
+
|
| 236 |
+
**A:** Mặc định `max_tokens=512`. Bạn có thể tăng lên trong request:
|
| 237 |
+
|
| 238 |
+
```python
|
| 239 |
+
{
|
| 240 |
+
'message': 'Your question',
|
| 241 |
+
'max_tokens': 1024, # Tăng lên
|
| 242 |
+
'hf_token': 'your_token'
|
| 243 |
+
}
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
### Q5: Có thể upload bao nhiêu texts/images cùng lúc?
|
| 247 |
+
|
| 248 |
+
**A:** Tối đa **10 texts** và **10 images** mỗi request tại endpoint `/index`.
|
| 249 |
+
|
| 250 |
+
### Q6: Chatbot có support tiếng Việt không?
|
| 251 |
+
|
| 252 |
+
**A:** Có! Hệ thống sử dụng Jina CLIP v2 hỗ trợ đa ngôn ngữ, bao gồm tiếng Việt.
|
| 253 |
+
|
| 254 |
+
### Q7: Làm sao để xem lịch sử chat?
|
| 255 |
+
|
| 256 |
+
**A:**
|
| 257 |
+
```bash
|
| 258 |
+
curl "http://localhost:8000/history?limit=10&skip=0"
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
### Q8: PDF của tôi có nhiều hình ảnh, có vấn đề gì không?
|
| 262 |
+
|
| 263 |
+
**A:** Hệ thống hiện chỉ extract text từ PDF. Hình ảnh trong PDF chưa được xử lý. Nếu cần xử lý hình ảnh trong PDF, có thể integrate RAG-Anything sau.
|
| 264 |
+
|
| 265 |
+
---
|
| 266 |
+
|
| 267 |
+
## 8. API Reference
|
| 268 |
+
|
| 269 |
+
### Endpoints Chính
|
| 270 |
+
|
| 271 |
+
| Endpoint | Method | Mô tả |
|
| 272 |
+
|----------|--------|-------|
|
| 273 |
+
| `/` | GET | Health check & API docs |
|
| 274 |
+
| `/index` | POST | Index texts + images (tối đa 10 mỗi loại) |
|
| 275 |
+
| `/search` | POST | Hybrid search (text + image) |
|
| 276 |
+
| `/search/text` | POST | Search chỉ bằng text |
|
| 277 |
+
| `/search/image` | POST | Search chỉ bằng image |
|
| 278 |
+
| `/chat` | POST | Chat với RAG |
|
| 279 |
+
| `/documents` | POST | Add text document |
|
| 280 |
+
| `/upload-pdf` | POST | Upload và index PDF |
|
| 281 |
+
| `/documents/pdf` | GET | List PDFs |
|
| 282 |
+
| `/documents/pdf/{id}` | DELETE | Delete PDF |
|
| 283 |
+
| `/history` | GET | Get chat history |
|
| 284 |
+
| `/stats` | GET | Collection statistics |
|
| 285 |
+
|
| 286 |
+
### Request Examples
|
| 287 |
+
|
| 288 |
+
**Index with multiple texts:**
|
| 289 |
+
```json
|
| 290 |
+
POST /index
|
| 291 |
+
{
|
| 292 |
+
"id": "doc123",
|
| 293 |
+
"texts": ["Text 1", "Text 2", "Text 3"]
|
| 294 |
+
}
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
+
**Chat with Advanced RAG:**
|
| 298 |
+
```json
|
| 299 |
+
POST /chat
|
| 300 |
+
{
|
| 301 |
+
"message": "Your question",
|
| 302 |
+
"use_rag": true,
|
| 303 |
+
"use_advanced_rag": true,
|
| 304 |
+
"use_reranking": true,
|
| 305 |
+
"top_k": 5,
|
| 306 |
+
"score_threshold": 0.5,
|
| 307 |
+
"hf_token": "hf_xxxxx"
|
| 308 |
+
}
|
| 309 |
+
```
|
| 310 |
+
|
| 311 |
+
---
|
| 312 |
+
|
| 313 |
+
## 9. Best Practices
|
| 314 |
+
|
| 315 |
+
### Index Dữ Liệu
|
| 316 |
+
✓ Chia nhỏ nội dung thành các chunks có nghĩa
|
| 317 |
+
✓ Thêm metadata đầy đủ (title, category, source)
|
| 318 |
+
✓ Sử dụng texts array cho multiple paragraphs
|
| 319 |
+
✗ Tránh index text quá dài trong 1 chunk
|
| 320 |
+
|
| 321 |
+
### Chat
|
| 322 |
+
✓ Bật Advanced RAG cho câu hỏi phức tạp
|
| 323 |
+
✓ Điều chỉnh `top_k` và `score_threshold` phù hợp
|
| 324 |
+
✓ Sử dụng `temperature` thấp (0.3-0.5) cho câu trả lời factual
|
| 325 |
+
✗ Tránh đặt `score_threshold` quá cao (>0.8)
|
| 326 |
+
|
| 327 |
+
### PDF
|
| 328 |
+
✓ PDF có text layer (không phải scanned image)
|
| 329 |
+
✓ Cấu trúc rõ ràng với headings, paragraphs
|
| 330 |
+
✓ Nội dung ngắn gọn, dễ hiểu
|
| 331 |
+
✗ Tránh PDF quá nhiều hình ảnh phức tạp
|
| 332 |
+
|
| 333 |
+
---
|
| 334 |
+
|
| 335 |
+
## 10. Troubleshooting
|
| 336 |
+
|
| 337 |
+
### Server không khởi động
|
| 338 |
+
- Kiểm tra dependencies: `pip install -r requirements.txt`
|
| 339 |
+
- Kiểm tra MongoDB connection string
|
| 340 |
+
- Kiểm tra Qdrant service
|
| 341 |
+
|
| 342 |
+
### Upload PDF lỗi
|
| 343 |
+
- Verify file là PDF hợp lệ
|
| 344 |
+
- Check file không bị corrupt
|
| 345 |
+
- Thử convert lại PDF nếu cần
|
| 346 |
+
|
| 347 |
+
### Chatbot không trả lời đúng
|
| 348 |
+
- Kiểm tra documents đã được index chưa: `/stats`
|
| 349 |
+
- Thử giảm `score_threshold`
|
| 350 |
+
- Bật Advanced RAG options
|
| 351 |
+
- Check LLM token (Hugging Face)
|
| 352 |
+
|
| 353 |
+
### Out of memory
|
| 354 |
+
- Giảm `chunk_size` trong PDF parser
|
| 355 |
+
- Giảm `top_k` trong chat request
|
| 356 |
+
- Index ít documents hơn mỗi lần
|
| 357 |
+
|
| 358 |
+
---
|
| 359 |
+
|
| 360 |
+
## 11. Liên Hệ & Support
|
| 361 |
+
|
| 362 |
+
Nếu có thắc mắc hoặc vấn đề:
|
| 363 |
+
- Check server logs
|
| 364 |
+
- Review API documentation tại `/docs`
|
| 365 |
+
- Xem GitHub issues
|
| 366 |
+
|
| 367 |
+
---
|
| 368 |
+
|
| 369 |
+
**Happy Chatting! 🤖**
|
chatbot_rag.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
+
from pymongo import MongoClient
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from embedding_service import JinaClipEmbeddingService
|
| 9 |
+
from qdrant_service import QdrantVectorService
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ChatbotRAG:
|
| 13 |
+
"""
|
| 14 |
+
Chatbot RAG với:
|
| 15 |
+
- LLM: GPT-OSS-20B (Hugging Face)
|
| 16 |
+
- Embeddings: Jina CLIP v2
|
| 17 |
+
- Vector DB: Qdrant
|
| 18 |
+
- Document Store: MongoDB
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
mongodb_uri: str = "mongodb+srv://truongtn7122003:[email protected]/",
|
| 24 |
+
db_name: str = "chatbot_rag",
|
| 25 |
+
collection_name: str = "documents"
|
| 26 |
+
):
|
| 27 |
+
"""
|
| 28 |
+
Initialize ChatbotRAG
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
mongodb_uri: MongoDB connection string
|
| 32 |
+
db_name: Database name
|
| 33 |
+
collection_name: Collection name for documents
|
| 34 |
+
"""
|
| 35 |
+
print("Initializing ChatbotRAG...")
|
| 36 |
+
|
| 37 |
+
# MongoDB client
|
| 38 |
+
self.mongo_client = MongoClient(mongodb_uri)
|
| 39 |
+
self.db = self.mongo_client[db_name]
|
| 40 |
+
self.documents_collection = self.db[collection_name]
|
| 41 |
+
self.chat_history_collection = self.db["chat_history"]
|
| 42 |
+
|
| 43 |
+
# Embedding service (Jina CLIP v2)
|
| 44 |
+
self.embedding_service = JinaClipEmbeddingService(
|
| 45 |
+
model_path="jinaai/jina-clip-v2"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Qdrant vector service
|
| 49 |
+
self.qdrant_service = QdrantVectorService(
|
| 50 |
+
collection_name="chatbot_rag_vectors",
|
| 51 |
+
vector_size=self.embedding_service.get_embedding_dimension()
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
print("✓ ChatbotRAG initialized successfully")
|
| 55 |
+
|
| 56 |
+
def add_document(self, text: str, metadata: Dict = None) -> str:
|
| 57 |
+
"""
|
| 58 |
+
Add document to MongoDB and Qdrant
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
text: Document text
|
| 62 |
+
metadata: Additional metadata
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
Document ID
|
| 66 |
+
"""
|
| 67 |
+
# Save to MongoDB
|
| 68 |
+
doc_data = {
|
| 69 |
+
"text": text,
|
| 70 |
+
"metadata": metadata or {},
|
| 71 |
+
"created_at": datetime.utcnow()
|
| 72 |
+
}
|
| 73 |
+
result = self.documents_collection.insert_one(doc_data)
|
| 74 |
+
doc_id = str(result.inserted_id)
|
| 75 |
+
|
| 76 |
+
# Generate embedding
|
| 77 |
+
embedding = self.embedding_service.encode_text(text)
|
| 78 |
+
|
| 79 |
+
# Index to Qdrant
|
| 80 |
+
self.qdrant_service.index_data(
|
| 81 |
+
doc_id=doc_id,
|
| 82 |
+
embedding=embedding,
|
| 83 |
+
metadata={
|
| 84 |
+
"text": text,
|
| 85 |
+
"source": "user_upload",
|
| 86 |
+
**(metadata or {})
|
| 87 |
+
}
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return doc_id
|
| 91 |
+
|
| 92 |
+
def retrieve_context(self, query: str, top_k: int = 3) -> List[Dict]:
|
| 93 |
+
"""
|
| 94 |
+
Retrieve relevant context from vector DB
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
query: User query
|
| 98 |
+
top_k: Number of results to retrieve
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
List of relevant documents
|
| 102 |
+
"""
|
| 103 |
+
# Generate query embedding
|
| 104 |
+
query_embedding = self.embedding_service.encode_text(query)
|
| 105 |
+
|
| 106 |
+
# Search in Qdrant
|
| 107 |
+
results = self.qdrant_service.search(
|
| 108 |
+
query_embedding=query_embedding,
|
| 109 |
+
limit=top_k,
|
| 110 |
+
score_threshold=0.5 # Only get relevant results
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return results
|
| 114 |
+
|
| 115 |
+
def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
|
| 116 |
+
"""
|
| 117 |
+
Save chat interaction to MongoDB
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
user_message: User's message
|
| 121 |
+
assistant_response: Assistant's response
|
| 122 |
+
context_used: Context retrieved from RAG
|
| 123 |
+
"""
|
| 124 |
+
chat_data = {
|
| 125 |
+
"user_message": user_message,
|
| 126 |
+
"assistant_response": assistant_response,
|
| 127 |
+
"context_used": context_used,
|
| 128 |
+
"timestamp": datetime.utcnow()
|
| 129 |
+
}
|
| 130 |
+
self.chat_history_collection.insert_one(chat_data)
|
| 131 |
+
|
| 132 |
+
def respond(
|
| 133 |
+
self,
|
| 134 |
+
message: str,
|
| 135 |
+
history: List[Dict[str, str]],
|
| 136 |
+
system_message: str,
|
| 137 |
+
max_tokens: int,
|
| 138 |
+
temperature: float,
|
| 139 |
+
top_p: float,
|
| 140 |
+
use_rag: bool,
|
| 141 |
+
hf_token: gr.OAuthToken,
|
| 142 |
+
):
|
| 143 |
+
"""
|
| 144 |
+
Generate response with RAG
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
message: User message
|
| 148 |
+
history: Chat history
|
| 149 |
+
system_message: System prompt
|
| 150 |
+
max_tokens: Max tokens to generate
|
| 151 |
+
temperature: Temperature for generation
|
| 152 |
+
top_p: Top-p sampling
|
| 153 |
+
use_rag: Whether to use RAG retrieval
|
| 154 |
+
hf_token: Hugging Face token
|
| 155 |
+
|
| 156 |
+
Yields:
|
| 157 |
+
Generated response
|
| 158 |
+
"""
|
| 159 |
+
# Initialize LLM client
|
| 160 |
+
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 161 |
+
|
| 162 |
+
# Prepare context from RAG
|
| 163 |
+
context_text = ""
|
| 164 |
+
context_used = []
|
| 165 |
+
|
| 166 |
+
if use_rag:
|
| 167 |
+
# Retrieve relevant context
|
| 168 |
+
retrieved_docs = self.retrieve_context(message, top_k=3)
|
| 169 |
+
context_used = retrieved_docs
|
| 170 |
+
|
| 171 |
+
if retrieved_docs:
|
| 172 |
+
context_text = "\n\n**Relevant Context:**\n"
|
| 173 |
+
for i, doc in enumerate(retrieved_docs, 1):
|
| 174 |
+
doc_text = doc["metadata"].get("text", "")
|
| 175 |
+
confidence = doc["confidence"]
|
| 176 |
+
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
|
| 177 |
+
|
| 178 |
+
# Add context to system message
|
| 179 |
+
system_message = f"{system_message}\n\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
|
| 180 |
+
|
| 181 |
+
# Build messages for LLM
|
| 182 |
+
messages = [{"role": "system", "content": system_message}]
|
| 183 |
+
messages.extend(history)
|
| 184 |
+
messages.append({"role": "user", "content": message})
|
| 185 |
+
|
| 186 |
+
# Generate response
|
| 187 |
+
response = ""
|
| 188 |
+
|
| 189 |
+
try:
|
| 190 |
+
for msg in client.chat_completion(
|
| 191 |
+
messages,
|
| 192 |
+
max_tokens=max_tokens,
|
| 193 |
+
stream=True,
|
| 194 |
+
temperature=temperature,
|
| 195 |
+
top_p=top_p,
|
| 196 |
+
):
|
| 197 |
+
choices = msg.choices
|
| 198 |
+
token = ""
|
| 199 |
+
if len(choices) and choices[0].delta.content:
|
| 200 |
+
token = choices[0].delta.content
|
| 201 |
+
|
| 202 |
+
response += token
|
| 203 |
+
yield response
|
| 204 |
+
|
| 205 |
+
# Save to chat history
|
| 206 |
+
self.save_chat_history(message, response, context_used)
|
| 207 |
+
|
| 208 |
+
except Exception as e:
|
| 209 |
+
error_msg = f"Error generating response: {str(e)}"
|
| 210 |
+
yield error_msg
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# Initialize ChatbotRAG
|
| 214 |
+
chatbot_rag = ChatbotRAG()
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def respond_wrapper(
|
| 218 |
+
message,
|
| 219 |
+
history,
|
| 220 |
+
system_message,
|
| 221 |
+
max_tokens,
|
| 222 |
+
temperature,
|
| 223 |
+
top_p,
|
| 224 |
+
use_rag,
|
| 225 |
+
hf_token,
|
| 226 |
+
):
|
| 227 |
+
"""Wrapper for Gradio ChatInterface"""
|
| 228 |
+
yield from chatbot_rag.respond(
|
| 229 |
+
message=message,
|
| 230 |
+
history=history,
|
| 231 |
+
system_message=system_message,
|
| 232 |
+
max_tokens=max_tokens,
|
| 233 |
+
temperature=temperature,
|
| 234 |
+
top_p=top_p,
|
| 235 |
+
use_rag=use_rag,
|
| 236 |
+
hf_token=hf_token,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def add_document_to_rag(text: str) -> str:
|
| 241 |
+
"""
|
| 242 |
+
Add document to RAG knowledge base
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
text: Document text
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
Success message
|
| 249 |
+
"""
|
| 250 |
+
try:
|
| 251 |
+
doc_id = chatbot_rag.add_document(text)
|
| 252 |
+
return f"✓ Document added successfully! ID: {doc_id}"
|
| 253 |
+
except Exception as e:
|
| 254 |
+
return f"✗ Error adding document: {str(e)}"
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# Create Gradio interface
|
| 258 |
+
with gr.Blocks(title="ChatbotRAG - GPT-OSS-20B + Jina CLIP v2 + MongoDB") as demo:
|
| 259 |
+
gr.Markdown("""
|
| 260 |
+
# 🤖 ChatbotRAG
|
| 261 |
+
|
| 262 |
+
**Features:**
|
| 263 |
+
- 💬 LLM: GPT-OSS-20B
|
| 264 |
+
- 🔍 Embeddings: Jina CLIP v2 (Vietnamese support)
|
| 265 |
+
- 📊 Vector DB: Qdrant Cloud
|
| 266 |
+
- 🗄️ Document Store: MongoDB
|
| 267 |
+
|
| 268 |
+
**How to use:**
|
| 269 |
+
1. Add documents to knowledge base (optional)
|
| 270 |
+
2. Toggle "Use RAG" to enable context retrieval
|
| 271 |
+
3. Chat with the bot!
|
| 272 |
+
""")
|
| 273 |
+
|
| 274 |
+
with gr.Sidebar():
|
| 275 |
+
gr.LoginButton()
|
| 276 |
+
|
| 277 |
+
gr.Markdown("### ⚙️ Settings")
|
| 278 |
+
|
| 279 |
+
use_rag = gr.Checkbox(
|
| 280 |
+
label="Use RAG",
|
| 281 |
+
value=True,
|
| 282 |
+
info="Enable RAG to retrieve relevant context from knowledge base"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
system_message = gr.Textbox(
|
| 286 |
+
value="You are a helpful AI assistant. Answer questions based on the provided context when available.",
|
| 287 |
+
label="System message",
|
| 288 |
+
lines=3
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
max_tokens = gr.Slider(
|
| 292 |
+
minimum=1,
|
| 293 |
+
maximum=2048,
|
| 294 |
+
value=512,
|
| 295 |
+
step=1,
|
| 296 |
+
label="Max new tokens"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
temperature = gr.Slider(
|
| 300 |
+
minimum=0.1,
|
| 301 |
+
maximum=4.0,
|
| 302 |
+
value=0.7,
|
| 303 |
+
step=0.1,
|
| 304 |
+
label="Temperature"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
top_p = gr.Slider(
|
| 308 |
+
minimum=0.1,
|
| 309 |
+
maximum=1.0,
|
| 310 |
+
value=0.95,
|
| 311 |
+
step=0.05,
|
| 312 |
+
label="Top-p (nucleus sampling)"
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Chat interface
|
| 316 |
+
chatbot = gr.ChatInterface(
|
| 317 |
+
respond_wrapper,
|
| 318 |
+
type="messages",
|
| 319 |
+
additional_inputs=[
|
| 320 |
+
system_message,
|
| 321 |
+
max_tokens,
|
| 322 |
+
temperature,
|
| 323 |
+
top_p,
|
| 324 |
+
use_rag,
|
| 325 |
+
],
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# Document management
|
| 329 |
+
with gr.Accordion("📚 Knowledge Base Management", open=False):
|
| 330 |
+
gr.Markdown("### Add Documents to Knowledge Base")
|
| 331 |
+
|
| 332 |
+
doc_text = gr.Textbox(
|
| 333 |
+
label="Document Text",
|
| 334 |
+
placeholder="Enter document text here...",
|
| 335 |
+
lines=5
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
add_btn = gr.Button("Add Document", variant="primary")
|
| 339 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 340 |
+
|
| 341 |
+
add_btn.click(
|
| 342 |
+
fn=add_document_to_rag,
|
| 343 |
+
inputs=[doc_text],
|
| 344 |
+
outputs=[output_msg]
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
chatbot.render()
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
if __name__ == "__main__":
|
| 351 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
chatbot_rag_api.py
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from typing import Optional, List, Dict
|
| 5 |
+
from pymongo import MongoClient
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import numpy as np
|
| 8 |
+
import os
|
| 9 |
+
from huggingface_hub import InferenceClient
|
| 10 |
+
|
| 11 |
+
from embedding_service import JinaClipEmbeddingService
|
| 12 |
+
from qdrant_service import QdrantVectorService
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Pydantic models
|
| 16 |
+
class ChatRequest(BaseModel):
|
| 17 |
+
message: str
|
| 18 |
+
use_rag: bool = True
|
| 19 |
+
top_k: int = 3
|
| 20 |
+
system_message: Optional[str] = "You are a helpful AI assistant."
|
| 21 |
+
max_tokens: int = 512
|
| 22 |
+
temperature: float = 0.7
|
| 23 |
+
top_p: float = 0.95
|
| 24 |
+
hf_token: Optional[str] = None # Hugging Face token (optional, sẽ dùng env nếu không truyền)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ChatResponse(BaseModel):
|
| 28 |
+
response: str
|
| 29 |
+
context_used: List[Dict]
|
| 30 |
+
timestamp: str
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class AddDocumentRequest(BaseModel):
|
| 34 |
+
text: str
|
| 35 |
+
metadata: Optional[Dict] = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class AddDocumentResponse(BaseModel):
|
| 39 |
+
success: bool
|
| 40 |
+
doc_id: str
|
| 41 |
+
message: str
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class SearchRequest(BaseModel):
|
| 45 |
+
query: str
|
| 46 |
+
top_k: int = 5
|
| 47 |
+
score_threshold: Optional[float] = 0.5
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class SearchResponse(BaseModel):
|
| 51 |
+
results: List[Dict]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Initialize FastAPI
|
| 55 |
+
app = FastAPI(
|
| 56 |
+
title="ChatbotRAG API",
|
| 57 |
+
description="API for RAG Chatbot with GPT-OSS-20B + Jina CLIP v2 + MongoDB + Qdrant",
|
| 58 |
+
version="1.0.0"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# CORS middleware
|
| 62 |
+
app.add_middleware(
|
| 63 |
+
CORSMiddleware,
|
| 64 |
+
allow_origins=["*"], # Cho phép tất cả origins (có thể giới hạn trong production)
|
| 65 |
+
allow_credentials=True,
|
| 66 |
+
allow_methods=["*"],
|
| 67 |
+
allow_headers=["*"],
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# ChatbotRAG Service
|
| 72 |
+
class ChatbotRAGService:
|
| 73 |
+
"""
|
| 74 |
+
ChatbotRAG Service cho API
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
mongodb_uri: str = "mongodb+srv://truongtn7122003:[email protected]/",
|
| 80 |
+
db_name: str = "chatbot_rag",
|
| 81 |
+
collection_name: str = "documents",
|
| 82 |
+
hf_token: Optional[str] = None
|
| 83 |
+
):
|
| 84 |
+
print("Initializing ChatbotRAG Service...")
|
| 85 |
+
|
| 86 |
+
# MongoDB
|
| 87 |
+
self.mongo_client = MongoClient(mongodb_uri)
|
| 88 |
+
self.db = self.mongo_client[db_name]
|
| 89 |
+
self.documents_collection = self.db[collection_name]
|
| 90 |
+
self.chat_history_collection = self.db["chat_history"]
|
| 91 |
+
|
| 92 |
+
# Embedding service
|
| 93 |
+
self.embedding_service = JinaClipEmbeddingService(
|
| 94 |
+
model_path="jinaai/jina-clip-v2"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Qdrant
|
| 98 |
+
collection_name = os.getenv("COLLECTION_NAME","event_social_media")
|
| 99 |
+
self.qdrant_service = QdrantVectorService(
|
| 100 |
+
collection_name= collection_name,
|
| 101 |
+
vector_size=self.embedding_service.get_embedding_dimension()
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Hugging Face token (từ env hoặc truyền vào)
|
| 105 |
+
self.hf_token = hf_token or os.getenv("HUGGINGFACE_TOKEN")
|
| 106 |
+
if self.hf_token:
|
| 107 |
+
print("✓ Hugging Face token configured")
|
| 108 |
+
else:
|
| 109 |
+
print("⚠ No Hugging Face token - LLM generation will use placeholder")
|
| 110 |
+
|
| 111 |
+
print("✓ ChatbotRAG Service initialized")
|
| 112 |
+
|
| 113 |
+
def add_document(self, text: str, metadata: Dict = None) -> str:
|
| 114 |
+
"""Add document to knowledge base"""
|
| 115 |
+
# Save to MongoDB
|
| 116 |
+
doc_data = {
|
| 117 |
+
"text": text,
|
| 118 |
+
"metadata": metadata or {},
|
| 119 |
+
"created_at": datetime.utcnow()
|
| 120 |
+
}
|
| 121 |
+
result = self.documents_collection.insert_one(doc_data)
|
| 122 |
+
doc_id = str(result.inserted_id)
|
| 123 |
+
|
| 124 |
+
# Generate embedding
|
| 125 |
+
embedding = self.embedding_service.encode_text(text)
|
| 126 |
+
|
| 127 |
+
# Index to Qdrant
|
| 128 |
+
self.qdrant_service.index_data(
|
| 129 |
+
doc_id=doc_id,
|
| 130 |
+
embedding=embedding,
|
| 131 |
+
metadata={
|
| 132 |
+
"text": text,
|
| 133 |
+
"source": "api",
|
| 134 |
+
**(metadata or {})
|
| 135 |
+
}
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return doc_id
|
| 139 |
+
|
| 140 |
+
def retrieve_context(self, query: str, top_k: int = 3, score_threshold: float = 0.5) -> List[Dict]:
|
| 141 |
+
"""Retrieve relevant context from vector DB"""
|
| 142 |
+
# Generate query embedding
|
| 143 |
+
query_embedding = self.embedding_service.encode_text(query)
|
| 144 |
+
|
| 145 |
+
# Search in Qdrant
|
| 146 |
+
results = self.qdrant_service.search(
|
| 147 |
+
query_embedding=query_embedding,
|
| 148 |
+
limit=top_k,
|
| 149 |
+
score_threshold=score_threshold
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return results
|
| 153 |
+
|
| 154 |
+
def generate_response(
|
| 155 |
+
self,
|
| 156 |
+
message: str,
|
| 157 |
+
context: List[Dict],
|
| 158 |
+
system_message: str,
|
| 159 |
+
max_tokens: int = 512,
|
| 160 |
+
temperature: float = 0.7,
|
| 161 |
+
top_p: float = 0.95,
|
| 162 |
+
hf_token: Optional[str] = None
|
| 163 |
+
) -> str:
|
| 164 |
+
"""
|
| 165 |
+
Generate response using Hugging Face LLM
|
| 166 |
+
"""
|
| 167 |
+
# Build context text
|
| 168 |
+
context_text = ""
|
| 169 |
+
if context:
|
| 170 |
+
context_text = "\n\nRelevant Context:\n"
|
| 171 |
+
for i, doc in enumerate(context, 1):
|
| 172 |
+
doc_text = doc["metadata"].get("text", "")
|
| 173 |
+
confidence = doc["confidence"]
|
| 174 |
+
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
|
| 175 |
+
|
| 176 |
+
# Add context to system message
|
| 177 |
+
system_message = f"{system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
|
| 178 |
+
|
| 179 |
+
# Use token from request or fallback to service token
|
| 180 |
+
token = hf_token or self.hf_token
|
| 181 |
+
|
| 182 |
+
# If no token available, return placeholder
|
| 183 |
+
if not token:
|
| 184 |
+
return f"""[LLM Response Placeholder]
|
| 185 |
+
|
| 186 |
+
Context retrieved: {len(context)} documents
|
| 187 |
+
User question: {message}
|
| 188 |
+
|
| 189 |
+
To enable actual LLM generation:
|
| 190 |
+
1. Set HUGGINGFACE_TOKEN environment variable, OR
|
| 191 |
+
2. Pass hf_token in request body
|
| 192 |
+
|
| 193 |
+
Example:
|
| 194 |
+
{{
|
| 195 |
+
"message": "Your question",
|
| 196 |
+
"hf_token": "hf_xxxxxxxxxxxxx"
|
| 197 |
+
}}
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
# Initialize HF Inference Client
|
| 201 |
+
try:
|
| 202 |
+
client = InferenceClient(
|
| 203 |
+
token=token,
|
| 204 |
+
model="openai/gpt-oss-20b"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Build messages
|
| 208 |
+
messages = [
|
| 209 |
+
{"role": "system", "content": system_message},
|
| 210 |
+
{"role": "user", "content": message}
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
# Generate response (non-streaming for API)
|
| 214 |
+
response = ""
|
| 215 |
+
for msg in client.chat_completion(
|
| 216 |
+
messages,
|
| 217 |
+
max_tokens=max_tokens,
|
| 218 |
+
stream=True,
|
| 219 |
+
temperature=temperature,
|
| 220 |
+
top_p=top_p,
|
| 221 |
+
):
|
| 222 |
+
choices = msg.choices
|
| 223 |
+
if len(choices) and choices[0].delta.content:
|
| 224 |
+
response += choices[0].delta.content
|
| 225 |
+
|
| 226 |
+
return response
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
return f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
|
| 230 |
+
|
| 231 |
+
def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
|
| 232 |
+
"""Save chat to MongoDB"""
|
| 233 |
+
chat_data = {
|
| 234 |
+
"user_message": user_message,
|
| 235 |
+
"assistant_response": assistant_response,
|
| 236 |
+
"context_used": context_used,
|
| 237 |
+
"timestamp": datetime.utcnow()
|
| 238 |
+
}
|
| 239 |
+
self.chat_history_collection.insert_one(chat_data)
|
| 240 |
+
|
| 241 |
+
def get_stats(self) -> Dict:
|
| 242 |
+
"""Get statistics"""
|
| 243 |
+
return {
|
| 244 |
+
"documents_count": self.documents_collection.count_documents({}),
|
| 245 |
+
"chat_history_count": self.chat_history_collection.count_documents({}),
|
| 246 |
+
"qdrant_info": self.qdrant_service.get_collection_info()
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Initialize service
|
| 251 |
+
rag_service = ChatbotRAGService()
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# API Endpoints
|
| 255 |
+
|
| 256 |
+
@app.get("/")
|
| 257 |
+
async def root():
|
| 258 |
+
"""Health check"""
|
| 259 |
+
return {
|
| 260 |
+
"status": "running",
|
| 261 |
+
"service": "ChatbotRAG API",
|
| 262 |
+
"version": "1.0.0",
|
| 263 |
+
"endpoints": {
|
| 264 |
+
"POST /chat": "Chat with RAG",
|
| 265 |
+
"POST /documents": "Add document to knowledge base",
|
| 266 |
+
"POST /search": "Search in knowledge base",
|
| 267 |
+
"GET /stats": "Get statistics",
|
| 268 |
+
"GET /history": "Get chat history"
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 274 |
+
async def chat(request: ChatRequest):
|
| 275 |
+
"""
|
| 276 |
+
Chat endpoint with RAG
|
| 277 |
+
|
| 278 |
+
Body:
|
| 279 |
+
- message: User message
|
| 280 |
+
- use_rag: Enable RAG retrieval (default: true)
|
| 281 |
+
- top_k: Number of documents to retrieve (default: 3)
|
| 282 |
+
- system_message: System prompt (optional)
|
| 283 |
+
- max_tokens: Max tokens for response (default: 512)
|
| 284 |
+
- temperature: Temperature for generation (default: 0.7)
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
- response: Generated response
|
| 288 |
+
- context_used: Retrieved context documents
|
| 289 |
+
- timestamp: Response timestamp
|
| 290 |
+
"""
|
| 291 |
+
try:
|
| 292 |
+
# Retrieve context if RAG enabled
|
| 293 |
+
context_used = []
|
| 294 |
+
if request.use_rag:
|
| 295 |
+
context_used = rag_service.retrieve_context(
|
| 296 |
+
query=request.message,
|
| 297 |
+
top_k=request.top_k
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Generate response
|
| 301 |
+
response = rag_service.generate_response(
|
| 302 |
+
message=request.message,
|
| 303 |
+
context=context_used,
|
| 304 |
+
system_message=request.system_message,
|
| 305 |
+
max_tokens=request.max_tokens,
|
| 306 |
+
temperature=request.temperature,
|
| 307 |
+
top_p=request.top_p,
|
| 308 |
+
hf_token=request.hf_token
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
# Save to history
|
| 312 |
+
rag_service.save_chat_history(
|
| 313 |
+
user_message=request.message,
|
| 314 |
+
assistant_response=response,
|
| 315 |
+
context_used=context_used
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
return ChatResponse(
|
| 319 |
+
response=response,
|
| 320 |
+
context_used=context_used,
|
| 321 |
+
timestamp=datetime.utcnow().isoformat()
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
except Exception as e:
|
| 325 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
@app.post("/documents", response_model=AddDocumentResponse)
|
| 329 |
+
async def add_document(request: AddDocumentRequest):
|
| 330 |
+
"""
|
| 331 |
+
Add document to knowledge base
|
| 332 |
+
|
| 333 |
+
Body:
|
| 334 |
+
- text: Document text
|
| 335 |
+
- metadata: Additional metadata (optional)
|
| 336 |
+
|
| 337 |
+
Returns:
|
| 338 |
+
- success: True/False
|
| 339 |
+
- doc_id: MongoDB document ID
|
| 340 |
+
- message: Status message
|
| 341 |
+
"""
|
| 342 |
+
try:
|
| 343 |
+
doc_id = rag_service.add_document(
|
| 344 |
+
text=request.text,
|
| 345 |
+
metadata=request.metadata
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
return AddDocumentResponse(
|
| 349 |
+
success=True,
|
| 350 |
+
doc_id=doc_id,
|
| 351 |
+
message=f"Document added successfully with ID: {doc_id}"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
except Exception as e:
|
| 355 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
@app.post("/search", response_model=SearchResponse)
|
| 359 |
+
async def search(request: SearchRequest):
|
| 360 |
+
"""
|
| 361 |
+
Search in knowledge base
|
| 362 |
+
|
| 363 |
+
Body:
|
| 364 |
+
- query: Search query
|
| 365 |
+
- top_k: Number of results (default: 5)
|
| 366 |
+
- score_threshold: Minimum score (default: 0.5)
|
| 367 |
+
|
| 368 |
+
Returns:
|
| 369 |
+
- results: List of matching documents
|
| 370 |
+
"""
|
| 371 |
+
try:
|
| 372 |
+
results = rag_service.retrieve_context(
|
| 373 |
+
query=request.query,
|
| 374 |
+
top_k=request.top_k,
|
| 375 |
+
score_threshold=request.score_threshold
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
return SearchResponse(results=results)
|
| 379 |
+
|
| 380 |
+
except Exception as e:
|
| 381 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
@app.get("/stats")
|
| 385 |
+
async def get_stats():
|
| 386 |
+
"""
|
| 387 |
+
Get statistics
|
| 388 |
+
|
| 389 |
+
Returns:
|
| 390 |
+
- documents_count: Number of documents in MongoDB
|
| 391 |
+
- chat_history_count: Number of chat messages
|
| 392 |
+
- qdrant_info: Qdrant collection info
|
| 393 |
+
"""
|
| 394 |
+
try:
|
| 395 |
+
return rag_service.get_stats()
|
| 396 |
+
except Exception as e:
|
| 397 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
@app.get("/history")
|
| 401 |
+
async def get_history(limit: int = 10, skip: int = 0):
|
| 402 |
+
"""
|
| 403 |
+
Get chat history
|
| 404 |
+
|
| 405 |
+
Query params:
|
| 406 |
+
- limit: Number of messages to return (default: 10)
|
| 407 |
+
- skip: Number of messages to skip (default: 0)
|
| 408 |
+
|
| 409 |
+
Returns:
|
| 410 |
+
- history: List of chat messages
|
| 411 |
+
"""
|
| 412 |
+
try:
|
| 413 |
+
history = list(
|
| 414 |
+
rag_service.chat_history_collection
|
| 415 |
+
.find({}, {"_id": 0})
|
| 416 |
+
.sort("timestamp", -1)
|
| 417 |
+
.skip(skip)
|
| 418 |
+
.limit(limit)
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
# Convert datetime to string
|
| 422 |
+
for msg in history:
|
| 423 |
+
if "timestamp" in msg:
|
| 424 |
+
msg["timestamp"] = msg["timestamp"].isoformat()
|
| 425 |
+
|
| 426 |
+
return {"history": history, "total": rag_service.chat_history_collection.count_documents({})}
|
| 427 |
+
|
| 428 |
+
except Exception as e:
|
| 429 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
@app.delete("/documents/{doc_id}")
|
| 433 |
+
async def delete_document(doc_id: str):
|
| 434 |
+
"""
|
| 435 |
+
Delete document from knowledge base
|
| 436 |
+
|
| 437 |
+
Args:
|
| 438 |
+
- doc_id: Document ID (MongoDB ObjectId)
|
| 439 |
+
|
| 440 |
+
Returns:
|
| 441 |
+
- success: True/False
|
| 442 |
+
- message: Status message
|
| 443 |
+
"""
|
| 444 |
+
try:
|
| 445 |
+
# Delete from MongoDB
|
| 446 |
+
result = rag_service.documents_collection.delete_one({"_id": doc_id})
|
| 447 |
+
|
| 448 |
+
# Delete from Qdrant
|
| 449 |
+
if result.deleted_count > 0:
|
| 450 |
+
rag_service.qdrant_service.delete_by_id(doc_id)
|
| 451 |
+
return {"success": True, "message": f"Document {doc_id} deleted"}
|
| 452 |
+
else:
|
| 453 |
+
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
|
| 454 |
+
|
| 455 |
+
except HTTPException:
|
| 456 |
+
raise
|
| 457 |
+
except Exception as e:
|
| 458 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
if __name__ == "__main__":
|
| 462 |
+
import uvicorn
|
| 463 |
+
uvicorn.run(
|
| 464 |
+
app,
|
| 465 |
+
host="0.0.0.0",
|
| 466 |
+
port=8000,
|
| 467 |
+
log_level="info"
|
| 468 |
+
)
|
embedding_service.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AutoModel
|
| 5 |
+
from typing import Union, List
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class JinaClipEmbeddingService:
|
| 10 |
+
"""
|
| 11 |
+
Jina CLIP v2 Embedding Service với hỗ trợ tiếng Việt
|
| 12 |
+
Sử dụng AutoModel với trust_remote_code
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def __init__(self, model_path: str = "jinaai/jina-clip-v2"):
|
| 16 |
+
"""
|
| 17 |
+
Initialize Jina CLIP v2 model
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
model_path: Path to model hoặc HuggingFace model name
|
| 21 |
+
"""
|
| 22 |
+
print(f"Loading Jina CLIP v2 model from {model_path}...")
|
| 23 |
+
|
| 24 |
+
# Load model với trust_remote_code
|
| 25 |
+
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
| 26 |
+
|
| 27 |
+
# Chuyển sang eval mode
|
| 28 |
+
self.model.eval()
|
| 29 |
+
|
| 30 |
+
# Sử dụng GPU nếu có
|
| 31 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
self.model.to(self.device)
|
| 33 |
+
|
| 34 |
+
print(f"✓ Loaded Jina CLIP v2 model on: {self.device}")
|
| 35 |
+
|
| 36 |
+
def encode_text(
|
| 37 |
+
self,
|
| 38 |
+
text: Union[str, List[str]],
|
| 39 |
+
truncate_dim: int = None,
|
| 40 |
+
normalize: bool = True
|
| 41 |
+
) -> np.ndarray:
|
| 42 |
+
"""
|
| 43 |
+
Encode text thành vector embeddings (hỗ trợ tiếng Việt)
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
text: Text hoặc list of texts (tiếng Việt)
|
| 47 |
+
truncate_dim: Matryoshka dimension (64-1024, None = full 1024)
|
| 48 |
+
normalize: Có normalize embeddings không
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
numpy array của embeddings
|
| 52 |
+
"""
|
| 53 |
+
if isinstance(text, str):
|
| 54 |
+
text = [text]
|
| 55 |
+
|
| 56 |
+
# Jina CLIP v2 encode_text method
|
| 57 |
+
# Automatically handles tokenization internally
|
| 58 |
+
embeddings = self.model.encode_text(
|
| 59 |
+
text,
|
| 60 |
+
truncate_dim=truncate_dim # Optional: 64, 128, 256, 512, 1024
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Convert to numpy
|
| 64 |
+
if isinstance(embeddings, torch.Tensor):
|
| 65 |
+
embeddings = embeddings.cpu().detach().numpy()
|
| 66 |
+
|
| 67 |
+
# Normalize nếu cần
|
| 68 |
+
if normalize:
|
| 69 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 70 |
+
|
| 71 |
+
return embeddings
|
| 72 |
+
|
| 73 |
+
def encode_image(
|
| 74 |
+
self,
|
| 75 |
+
image: Union[Image.Image, bytes, List, str],
|
| 76 |
+
truncate_dim: int = None,
|
| 77 |
+
normalize: bool = True
|
| 78 |
+
) -> np.ndarray:
|
| 79 |
+
"""
|
| 80 |
+
Encode image thành vector embeddings
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
image: PIL Image, bytes, URL string, hoặc list of images
|
| 84 |
+
truncate_dim: Matryoshka dimension (64-1024, None = full 1024)
|
| 85 |
+
normalize: Có normalize embeddings không
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
numpy array của embeddings
|
| 89 |
+
"""
|
| 90 |
+
# Convert bytes to PIL Image nếu cần
|
| 91 |
+
if isinstance(image, bytes):
|
| 92 |
+
image = Image.open(io.BytesIO(image)).convert('RGB')
|
| 93 |
+
elif isinstance(image, list):
|
| 94 |
+
processed_images = []
|
| 95 |
+
for img in image:
|
| 96 |
+
if isinstance(img, bytes):
|
| 97 |
+
processed_images.append(Image.open(io.BytesIO(img)).convert('RGB'))
|
| 98 |
+
elif isinstance(img, str):
|
| 99 |
+
# URL string - keep as is, Jina CLIP can handle URLs
|
| 100 |
+
processed_images.append(img)
|
| 101 |
+
else:
|
| 102 |
+
processed_images.append(img)
|
| 103 |
+
image = processed_images
|
| 104 |
+
elif not isinstance(image, list) and not isinstance(image, str):
|
| 105 |
+
# Single PIL Image
|
| 106 |
+
image = [image]
|
| 107 |
+
|
| 108 |
+
# Jina CLIP v2 encode_image method
|
| 109 |
+
# Supports PIL Images, file paths, or URLs
|
| 110 |
+
embeddings = self.model.encode_image(
|
| 111 |
+
image,
|
| 112 |
+
truncate_dim=truncate_dim # Optional: 64, 128, 256, 512, 1024
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Convert to numpy
|
| 116 |
+
if isinstance(embeddings, torch.Tensor):
|
| 117 |
+
embeddings = embeddings.cpu().detach().numpy()
|
| 118 |
+
|
| 119 |
+
# Normalize nếu cần
|
| 120 |
+
if normalize:
|
| 121 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 122 |
+
|
| 123 |
+
return embeddings
|
| 124 |
+
|
| 125 |
+
def encode_multimodal(
|
| 126 |
+
self,
|
| 127 |
+
text: Union[str, List[str]] = None,
|
| 128 |
+
image: Union[Image.Image, bytes, List] = None,
|
| 129 |
+
truncate_dim: int = None,
|
| 130 |
+
normalize: bool = True
|
| 131 |
+
) -> np.ndarray:
|
| 132 |
+
"""
|
| 133 |
+
Encode cả text và image, trả về embeddings kết hợp
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
text: Text hoặc list of texts (tiếng Việt)
|
| 137 |
+
image: PIL Image, bytes, hoặc list of images
|
| 138 |
+
truncate_dim: Matryoshka dimension (64-1024, None = full 1024)
|
| 139 |
+
normalize: Có normalize embeddings không
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
numpy array của embeddings
|
| 143 |
+
"""
|
| 144 |
+
embeddings = []
|
| 145 |
+
|
| 146 |
+
if text is not None:
|
| 147 |
+
text_emb = self.encode_text(text, truncate_dim=truncate_dim, normalize=False)
|
| 148 |
+
embeddings.append(text_emb)
|
| 149 |
+
|
| 150 |
+
if image is not None:
|
| 151 |
+
image_emb = self.encode_image(image, truncate_dim=truncate_dim, normalize=False)
|
| 152 |
+
embeddings.append(image_emb)
|
| 153 |
+
|
| 154 |
+
# Combine embeddings (average)
|
| 155 |
+
if len(embeddings) == 2:
|
| 156 |
+
# Average của text và image embeddings
|
| 157 |
+
combined = np.mean(embeddings, axis=0)
|
| 158 |
+
elif len(embeddings) == 1:
|
| 159 |
+
combined = embeddings[0]
|
| 160 |
+
else:
|
| 161 |
+
raise ValueError("Phải cung cấp ít nhất text hoặc image")
|
| 162 |
+
|
| 163 |
+
# Normalize nếu cần
|
| 164 |
+
if normalize:
|
| 165 |
+
combined = combined / np.linalg.norm(combined, axis=1, keepdims=True)
|
| 166 |
+
|
| 167 |
+
return combined
|
| 168 |
+
|
| 169 |
+
def get_embedding_dimension(self) -> int:
|
| 170 |
+
"""
|
| 171 |
+
Trả về dimension của embeddings (1024 cho Jina CLIP v2)
|
| 172 |
+
"""
|
| 173 |
+
return 1024
|
main.py
ADDED
|
@@ -0,0 +1,1285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional, List, Dict
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import io
|
| 8 |
+
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from pymongo import MongoClient
|
| 12 |
+
from huggingface_hub import InferenceClient
|
| 13 |
+
|
| 14 |
+
from embedding_service import JinaClipEmbeddingService
|
| 15 |
+
from qdrant_service import QdrantVectorService
|
| 16 |
+
from advanced_rag import AdvancedRAG
|
| 17 |
+
from pdf_parser import PDFIndexer
|
| 18 |
+
from multimodal_pdf_parser import MultimodalPDFIndexer
|
| 19 |
+
|
| 20 |
+
# Initialize FastAPI app
|
| 21 |
+
app = FastAPI(
|
| 22 |
+
title="Event Social Media Embeddings & ChatbotRAG API",
|
| 23 |
+
description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
|
| 24 |
+
version="2.0.0"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# CORS middleware
|
| 28 |
+
app.add_middleware(
|
| 29 |
+
CORSMiddleware,
|
| 30 |
+
allow_origins=["*"],
|
| 31 |
+
allow_credentials=True,
|
| 32 |
+
allow_methods=["*"],
|
| 33 |
+
allow_headers=["*"],
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Initialize services
|
| 37 |
+
print("Initializing services...")
|
| 38 |
+
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
|
| 39 |
+
|
| 40 |
+
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
|
| 41 |
+
qdrant_service = QdrantVectorService(
|
| 42 |
+
collection_name=collection_name,
|
| 43 |
+
vector_size=embedding_service.get_embedding_dimension()
|
| 44 |
+
)
|
| 45 |
+
print(f"✓ Qdrant collection: {collection_name}")
|
| 46 |
+
|
| 47 |
+
# MongoDB connection
|
| 48 |
+
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:[email protected]/")
|
| 49 |
+
mongo_client = MongoClient(mongodb_uri)
|
| 50 |
+
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
|
| 51 |
+
documents_collection = db["documents"]
|
| 52 |
+
chat_history_collection = db["chat_history"]
|
| 53 |
+
print("✓ MongoDB connected")
|
| 54 |
+
|
| 55 |
+
# Hugging Face token
|
| 56 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 57 |
+
if hf_token:
|
| 58 |
+
print("✓ Hugging Face token configured")
|
| 59 |
+
|
| 60 |
+
# Initialize Advanced RAG
|
| 61 |
+
advanced_rag = AdvancedRAG(
|
| 62 |
+
embedding_service=embedding_service,
|
| 63 |
+
qdrant_service=qdrant_service
|
| 64 |
+
)
|
| 65 |
+
print("✓ Advanced RAG pipeline initialized")
|
| 66 |
+
|
| 67 |
+
# Initialize PDF Indexer
|
| 68 |
+
pdf_indexer = PDFIndexer(
|
| 69 |
+
embedding_service=embedding_service,
|
| 70 |
+
qdrant_service=qdrant_service,
|
| 71 |
+
documents_collection=documents_collection
|
| 72 |
+
)
|
| 73 |
+
print("✓ PDF Indexer initialized")
|
| 74 |
+
|
| 75 |
+
# Initialize Multimodal PDF Indexer (for PDFs with images)
|
| 76 |
+
multimodal_pdf_indexer = MultimodalPDFIndexer(
|
| 77 |
+
embedding_service=embedding_service,
|
| 78 |
+
qdrant_service=qdrant_service,
|
| 79 |
+
documents_collection=documents_collection
|
| 80 |
+
)
|
| 81 |
+
print("✓ Multimodal PDF Indexer initialized")
|
| 82 |
+
|
| 83 |
+
print("✓ Services initialized successfully")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Pydantic models for embeddings
|
| 87 |
+
class SearchRequest(BaseModel):
|
| 88 |
+
text: Optional[str] = None
|
| 89 |
+
limit: int = 10
|
| 90 |
+
score_threshold: Optional[float] = None
|
| 91 |
+
text_weight: float = 0.5
|
| 92 |
+
image_weight: float = 0.5
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class SearchResponse(BaseModel):
|
| 96 |
+
id: str
|
| 97 |
+
confidence: float
|
| 98 |
+
metadata: dict
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class IndexResponse(BaseModel):
|
| 102 |
+
success: bool
|
| 103 |
+
id: str
|
| 104 |
+
message: str
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# Pydantic models for ChatbotRAG
|
| 108 |
+
class ChatRequest(BaseModel):
|
| 109 |
+
message: str
|
| 110 |
+
use_rag: bool = True
|
| 111 |
+
top_k: int = 3
|
| 112 |
+
system_message: Optional[str] = "You are a helpful AI assistant."
|
| 113 |
+
max_tokens: int = 512
|
| 114 |
+
temperature: float = 0.7
|
| 115 |
+
top_p: float = 0.95
|
| 116 |
+
hf_token: Optional[str] = None
|
| 117 |
+
# Advanced RAG options
|
| 118 |
+
use_advanced_rag: bool = True
|
| 119 |
+
use_query_expansion: bool = True
|
| 120 |
+
use_reranking: bool = True
|
| 121 |
+
use_compression: bool = True
|
| 122 |
+
score_threshold: float = 0.5
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class ChatResponse(BaseModel):
|
| 126 |
+
response: str
|
| 127 |
+
context_used: List[Dict]
|
| 128 |
+
timestamp: str
|
| 129 |
+
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class AddDocumentRequest(BaseModel):
|
| 133 |
+
text: str
|
| 134 |
+
metadata: Optional[Dict] = None
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class AddDocumentResponse(BaseModel):
|
| 138 |
+
success: bool
|
| 139 |
+
doc_id: str
|
| 140 |
+
message: str
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class UploadPDFResponse(BaseModel):
|
| 144 |
+
success: bool
|
| 145 |
+
document_id: str
|
| 146 |
+
filename: str
|
| 147 |
+
chunks_indexed: int
|
| 148 |
+
message: str
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
@app.get("/")
|
| 152 |
+
async def root():
|
| 153 |
+
"""Health check endpoint with comprehensive API documentation"""
|
| 154 |
+
return {
|
| 155 |
+
"status": "running",
|
| 156 |
+
"service": "ChatbotRAG API - Advanced RAG with Multimodal Support",
|
| 157 |
+
"version": "3.0.0",
|
| 158 |
+
"vector_db": "Qdrant",
|
| 159 |
+
"document_db": "MongoDB",
|
| 160 |
+
"features": {
|
| 161 |
+
"multiple_inputs": "Index up to 10 texts + 10 images per request",
|
| 162 |
+
"advanced_rag": "Query expansion, reranking, contextual compression",
|
| 163 |
+
"pdf_support": "Upload PDFs and chat about their content",
|
| 164 |
+
"multimodal_pdf": "PDFs with text and image URLs - perfect for user guides",
|
| 165 |
+
"chat_history": "Track conversation history",
|
| 166 |
+
"hybrid_search": "Text + image search with Jina CLIP v2"
|
| 167 |
+
},
|
| 168 |
+
"endpoints": {
|
| 169 |
+
"indexing": {
|
| 170 |
+
"POST /index": {
|
| 171 |
+
"description": "Index multiple texts and images (NEW: up to 10 each)",
|
| 172 |
+
"content_type": "multipart/form-data",
|
| 173 |
+
"body": {
|
| 174 |
+
"id": "string (required) - Document ID",
|
| 175 |
+
"texts": "List[string] (optional) - Up to 10 texts",
|
| 176 |
+
"images": "List[UploadFile] (optional) - Up to 10 images"
|
| 177 |
+
},
|
| 178 |
+
"example": "curl -X POST '/index' -F 'id=doc1' -F 'texts=Text 1' -F 'texts=Text 2' -F '[email protected]'",
|
| 179 |
+
"response": {
|
| 180 |
+
"success": True,
|
| 181 |
+
"id": "doc1",
|
| 182 |
+
"message": "Indexed successfully with 2 texts and 1 images"
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
"POST /documents": {
|
| 186 |
+
"description": "Add text document to knowledge base",
|
| 187 |
+
"content_type": "application/json",
|
| 188 |
+
"body": {
|
| 189 |
+
"text": "string (required) - Document content",
|
| 190 |
+
"metadata": "object (optional) - Additional metadata"
|
| 191 |
+
},
|
| 192 |
+
"example": {
|
| 193 |
+
"text": "How to create event: Click 'Create Event' button...",
|
| 194 |
+
"metadata": {"category": "tutorial", "source": "user_guide"}
|
| 195 |
+
}
|
| 196 |
+
},
|
| 197 |
+
"POST /upload-pdf": {
|
| 198 |
+
"description": "Upload PDF file (text only)",
|
| 199 |
+
"content_type": "multipart/form-data",
|
| 200 |
+
"body": {
|
| 201 |
+
"file": "UploadFile (required) - PDF file",
|
| 202 |
+
"title": "string (optional) - Document title",
|
| 203 |
+
"category": "string (optional) - Category",
|
| 204 |
+
"description": "string (optional) - Description"
|
| 205 |
+
},
|
| 206 |
+
"example": "curl -X POST '/upload-pdf' -F '[email protected]' -F 'title=User Guide'"
|
| 207 |
+
},
|
| 208 |
+
"POST /upload-pdf-multimodal": {
|
| 209 |
+
"description": "Upload PDF with text and image URLs (RECOMMENDED for user guides)",
|
| 210 |
+
"content_type": "multipart/form-data",
|
| 211 |
+
"features": [
|
| 212 |
+
"Extracts text from PDF",
|
| 213 |
+
"Detects image URLs (http://, https://)",
|
| 214 |
+
"Supports markdown: ",
|
| 215 |
+
"Supports HTML: <img src='url'>",
|
| 216 |
+
"Links images to text chunks",
|
| 217 |
+
"Returns images with context in chat"
|
| 218 |
+
],
|
| 219 |
+
"body": {
|
| 220 |
+
"file": "UploadFile (required) - PDF file with image URLs",
|
| 221 |
+
"title": "string (optional) - Document title",
|
| 222 |
+
"category": "string (optional) - e.g. 'user_guide', 'tutorial'",
|
| 223 |
+
"description": "string (optional)"
|
| 224 |
+
},
|
| 225 |
+
"example": "curl -X POST '/upload-pdf-multimodal' -F 'file=@guide_with_images.pdf' -F 'category=user_guide'",
|
| 226 |
+
"response": {
|
| 227 |
+
"success": True,
|
| 228 |
+
"document_id": "pdf_multimodal_20251029_150000",
|
| 229 |
+
"chunks_indexed": 25,
|
| 230 |
+
"message": "PDF indexed with 25 chunks and 15 images"
|
| 231 |
+
},
|
| 232 |
+
"use_case": "Perfect for user guides with screenshots, tutorials with diagrams"
|
| 233 |
+
}
|
| 234 |
+
},
|
| 235 |
+
"search": {
|
| 236 |
+
"POST /search": {
|
| 237 |
+
"description": "Hybrid search with text and/or image",
|
| 238 |
+
"body": {
|
| 239 |
+
"text": "string (optional) - Query text",
|
| 240 |
+
"image": "UploadFile (optional) - Query image",
|
| 241 |
+
"limit": "int (default: 10)",
|
| 242 |
+
"score_threshold": "float (optional, 0-1)",
|
| 243 |
+
"text_weight": "float (default: 0.5)",
|
| 244 |
+
"image_weight": "float (default: 0.5)"
|
| 245 |
+
}
|
| 246 |
+
},
|
| 247 |
+
"POST /search/text": {
|
| 248 |
+
"description": "Text-only search",
|
| 249 |
+
"body": {"text": "string", "limit": "int", "score_threshold": "float"}
|
| 250 |
+
},
|
| 251 |
+
"POST /search/image": {
|
| 252 |
+
"description": "Image-only search",
|
| 253 |
+
"body": {"image": "UploadFile", "limit": "int", "score_threshold": "float"}
|
| 254 |
+
},
|
| 255 |
+
"POST /rag/search": {
|
| 256 |
+
"description": "Search in RAG knowledge base",
|
| 257 |
+
"body": {"query": "string", "top_k": "int (default: 5)", "score_threshold": "float (default: 0.5)"}
|
| 258 |
+
}
|
| 259 |
+
},
|
| 260 |
+
"chat": {
|
| 261 |
+
"POST /chat": {
|
| 262 |
+
"description": "Chat với Advanced RAG (Query expansion + Reranking + Compression)",
|
| 263 |
+
"content_type": "application/json",
|
| 264 |
+
"body": {
|
| 265 |
+
"message": "string (required) - User question",
|
| 266 |
+
"use_rag": "bool (default: true) - Enable RAG retrieval",
|
| 267 |
+
"use_advanced_rag": "bool (default: true) - Use advanced RAG pipeline (RECOMMENDED)",
|
| 268 |
+
"use_query_expansion": "bool (default: true) - Expand query with variations",
|
| 269 |
+
"use_reranking": "bool (default: true) - Rerank results for accuracy",
|
| 270 |
+
"use_compression": "bool (default: true) - Compress context to relevant parts",
|
| 271 |
+
"top_k": "int (default: 3) - Number of documents to retrieve",
|
| 272 |
+
"score_threshold": "float (default: 0.5) - Min relevance score (0-1)",
|
| 273 |
+
"max_tokens": "int (default: 512) - Max response tokens",
|
| 274 |
+
"temperature": "float (default: 0.7) - Creativity (0-1)",
|
| 275 |
+
"hf_token": "string (optional) - Hugging Face token"
|
| 276 |
+
},
|
| 277 |
+
"response": {
|
| 278 |
+
"response": "string - AI answer",
|
| 279 |
+
"context_used": "array - Retrieved documents with metadata",
|
| 280 |
+
"timestamp": "string",
|
| 281 |
+
"rag_stats": "object - RAG pipeline statistics (query variants, retrieval counts)"
|
| 282 |
+
},
|
| 283 |
+
"example_advanced": {
|
| 284 |
+
"message": "Làm sao để upload PDF có hình ảnh?",
|
| 285 |
+
"use_advanced_rag": True,
|
| 286 |
+
"use_reranking": True,
|
| 287 |
+
"top_k": 5,
|
| 288 |
+
"score_threshold": 0.5
|
| 289 |
+
},
|
| 290 |
+
"example_response_with_images": {
|
| 291 |
+
"response": "Để upload PDF có hình ảnh, sử dụng endpoint /upload-pdf-multimodal...",
|
| 292 |
+
"context_used": [
|
| 293 |
+
{
|
| 294 |
+
"id": "pdf_multimodal_...._p2_c1",
|
| 295 |
+
"confidence": 0.89,
|
| 296 |
+
"metadata": {
|
| 297 |
+
"text": "Bước 1: Chuẩn bị PDF với image URLs...",
|
| 298 |
+
"has_images": True,
|
| 299 |
+
"image_urls": [
|
| 300 |
+
"https://example.com/screenshot1.png",
|
| 301 |
+
"https://example.com/diagram.jpg"
|
| 302 |
+
],
|
| 303 |
+
"num_images": 2,
|
| 304 |
+
"page": 2
|
| 305 |
+
}
|
| 306 |
+
}
|
| 307 |
+
],
|
| 308 |
+
"rag_stats": {
|
| 309 |
+
"original_query": "Làm sao để upload PDF có hình ảnh?",
|
| 310 |
+
"expanded_queries": ["upload PDF hình ảnh", "PDF có ảnh"],
|
| 311 |
+
"initial_results": 10,
|
| 312 |
+
"after_rerank": 5,
|
| 313 |
+
"after_compression": 5
|
| 314 |
+
}
|
| 315 |
+
},
|
| 316 |
+
"notes": [
|
| 317 |
+
"Advanced RAG significantly improves answer quality",
|
| 318 |
+
"When multimodal PDF is used, images are returned in metadata",
|
| 319 |
+
"Requires HUGGINGFACE_TOKEN for actual LLM generation"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
"GET /history": {
|
| 323 |
+
"description": "Get chat history",
|
| 324 |
+
"query_params": {"limit": "int (default: 10)", "skip": "int (default: 0)"},
|
| 325 |
+
"response": {"history": "array", "total": "int"}
|
| 326 |
+
}
|
| 327 |
+
},
|
| 328 |
+
"management": {
|
| 329 |
+
"GET /documents/pdf": {
|
| 330 |
+
"description": "List all PDF documents",
|
| 331 |
+
"response": {"documents": "array", "total": "int"}
|
| 332 |
+
},
|
| 333 |
+
"DELETE /documents/pdf/{document_id}": {
|
| 334 |
+
"description": "Delete PDF and all its chunks",
|
| 335 |
+
"response": {"success": "bool", "message": "string"}
|
| 336 |
+
},
|
| 337 |
+
"GET /document/{doc_id}": {
|
| 338 |
+
"description": "Get document by ID",
|
| 339 |
+
"response": {"success": "bool", "data": "object"}
|
| 340 |
+
},
|
| 341 |
+
"DELETE /delete/{doc_id}": {
|
| 342 |
+
"description": "Delete document by ID",
|
| 343 |
+
"response": {"success": "bool", "message": "string"}
|
| 344 |
+
},
|
| 345 |
+
"GET /stats": {
|
| 346 |
+
"description": "Get Qdrant collection statistics",
|
| 347 |
+
"response": {"vectors_count": "int", "segments": "int", ...}
|
| 348 |
+
}
|
| 349 |
+
}
|
| 350 |
+
},
|
| 351 |
+
"quick_start": {
|
| 352 |
+
"1_upload_multimodal_pdf": "curl -X POST '/upload-pdf-multimodal' -F 'file=@user_guide.pdf' -F 'title=Guide'",
|
| 353 |
+
"2_verify_upload": "curl '/documents/pdf'",
|
| 354 |
+
"3_chat_with_rag": "curl -X POST '/chat' -H 'Content-Type: application/json' -d '{\"message\": \"How to...?\", \"use_advanced_rag\": true}'",
|
| 355 |
+
"4_see_images_in_context": "response['context_used'][0]['metadata']['image_urls']"
|
| 356 |
+
},
|
| 357 |
+
"use_cases": {
|
| 358 |
+
"user_guide_with_screenshots": {
|
| 359 |
+
"endpoint": "/upload-pdf-multimodal",
|
| 360 |
+
"description": "PDFs with text instructions + image URLs for visual guidance",
|
| 361 |
+
"benefits": ["Images linked to text chunks", "Chatbot returns relevant screenshots", "Perfect for step-by-step guides"]
|
| 362 |
+
},
|
| 363 |
+
"simple_text_docs": {
|
| 364 |
+
"endpoint": "/upload-pdf",
|
| 365 |
+
"description": "Simple PDFs with text only (FAQ, policies, etc.)"
|
| 366 |
+
},
|
| 367 |
+
"social_media_posts": {
|
| 368 |
+
"endpoint": "/index",
|
| 369 |
+
"description": "Index multiple posts with texts (up to 10) and images (up to 10)"
|
| 370 |
+
},
|
| 371 |
+
"complex_queries": {
|
| 372 |
+
"endpoint": "/chat",
|
| 373 |
+
"description": "Use advanced RAG for better accuracy on complex questions",
|
| 374 |
+
"settings": {"use_advanced_rag": True, "use_reranking": True, "use_compression": True}
|
| 375 |
+
}
|
| 376 |
+
},
|
| 377 |
+
"best_practices": {
|
| 378 |
+
"pdf_format": [
|
| 379 |
+
"Include image URLs in text (http://, https://)",
|
| 380 |
+
"Use markdown format:  or HTML: <img src='url'>",
|
| 381 |
+
"Clear structure with headings and sections",
|
| 382 |
+
"Link images close to their related text"
|
| 383 |
+
],
|
| 384 |
+
"chat_settings": {
|
| 385 |
+
"for_accuracy": {"temperature": 0.3, "use_advanced_rag": True, "use_reranking": True},
|
| 386 |
+
"for_creativity": {"temperature": 0.8, "use_advanced_rag": False},
|
| 387 |
+
"for_factual_answers": {"temperature": 0.3, "use_compression": True, "score_threshold": 0.6}
|
| 388 |
+
},
|
| 389 |
+
"retrieval_tuning": {
|
| 390 |
+
"not_finding_info": "Lower score_threshold to 0.3-0.4, increase top_k to 7-10",
|
| 391 |
+
"too_much_context": "Increase score_threshold to 0.6-0.7, decrease top_k to 3-5",
|
| 392 |
+
"slow_responses": "Disable compression, use basic RAG, decrease top_k"
|
| 393 |
+
}
|
| 394 |
+
},
|
| 395 |
+
"links": {
|
| 396 |
+
"docs": "http://localhost:8000/docs",
|
| 397 |
+
"redoc": "http://localhost:8000/redoc",
|
| 398 |
+
"openapi": "http://localhost:8000/openapi.json",
|
| 399 |
+
"guides": {
|
| 400 |
+
"multimodal_pdf": "See MULTIMODAL_PDF_GUIDE.md",
|
| 401 |
+
"advanced_rag": "See ADVANCED_RAG_GUIDE.md",
|
| 402 |
+
"pdf_general": "See PDF_RAG_GUIDE.md",
|
| 403 |
+
"quick_start": "See QUICK_START_PDF.md"
|
| 404 |
+
}
|
| 405 |
+
},
|
| 406 |
+
"system_info": {
|
| 407 |
+
"embedding_model": "Jina CLIP v2 (multimodal)",
|
| 408 |
+
"vector_db": "Qdrant with HNSW index",
|
| 409 |
+
"document_db": "MongoDB",
|
| 410 |
+
"rag_pipeline": "Advanced RAG with query expansion, reranking, compression",
|
| 411 |
+
"pdf_parser": "pypdfium2 with URL extraction",
|
| 412 |
+
"max_inputs": "10 texts + 10 images per /index request"
|
| 413 |
+
}
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
@app.post("/index", response_model=IndexResponse)
|
| 417 |
+
async def index_data(
|
| 418 |
+
id: str = Form(...),
|
| 419 |
+
texts: Optional[List[str]] = Form(None),
|
| 420 |
+
images: Optional[List[UploadFile]] = File(None)
|
| 421 |
+
):
|
| 422 |
+
"""
|
| 423 |
+
Index data vào vector database (hỗ trợ nhiều texts và images)
|
| 424 |
+
|
| 425 |
+
Body:
|
| 426 |
+
- id: Document ID (event ID, post ID, etc.)
|
| 427 |
+
- texts: List of text contents (tiếng Việt supported) - Tối đa 10 texts
|
| 428 |
+
- images: List of image files (optional) - Tối đa 10 images
|
| 429 |
+
|
| 430 |
+
Returns:
|
| 431 |
+
- success: True/False
|
| 432 |
+
- id: Document ID
|
| 433 |
+
- message: Status message
|
| 434 |
+
"""
|
| 435 |
+
try:
|
| 436 |
+
# Validation
|
| 437 |
+
if texts is None and images is None:
|
| 438 |
+
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất texts hoặc images")
|
| 439 |
+
|
| 440 |
+
if texts and len(texts) > 10:
|
| 441 |
+
raise HTTPException(status_code=400, detail="Tối đa 10 texts")
|
| 442 |
+
|
| 443 |
+
if images and len(images) > 10:
|
| 444 |
+
raise HTTPException(status_code=400, detail="Tối đa 10 images")
|
| 445 |
+
|
| 446 |
+
# Prepare embeddings
|
| 447 |
+
text_embeddings = []
|
| 448 |
+
image_embeddings = []
|
| 449 |
+
|
| 450 |
+
# Encode multiple texts (tiếng Việt)
|
| 451 |
+
if texts:
|
| 452 |
+
for text in texts:
|
| 453 |
+
if text and text.strip():
|
| 454 |
+
text_emb = embedding_service.encode_text(text)
|
| 455 |
+
text_embeddings.append(text_emb)
|
| 456 |
+
|
| 457 |
+
# Encode multiple images
|
| 458 |
+
if images:
|
| 459 |
+
for image in images:
|
| 460 |
+
if image.filename: # Check if image is provided
|
| 461 |
+
image_bytes = await image.read()
|
| 462 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 463 |
+
image_emb = embedding_service.encode_image(pil_image)
|
| 464 |
+
image_embeddings.append(image_emb)
|
| 465 |
+
|
| 466 |
+
# Combine embeddings
|
| 467 |
+
all_embeddings = []
|
| 468 |
+
|
| 469 |
+
if text_embeddings:
|
| 470 |
+
# Average all text embeddings
|
| 471 |
+
avg_text_embedding = np.mean(text_embeddings, axis=0)
|
| 472 |
+
all_embeddings.append(avg_text_embedding)
|
| 473 |
+
|
| 474 |
+
if image_embeddings:
|
| 475 |
+
# Average all image embeddings
|
| 476 |
+
avg_image_embedding = np.mean(image_embeddings, axis=0)
|
| 477 |
+
all_embeddings.append(avg_image_embedding)
|
| 478 |
+
|
| 479 |
+
if not all_embeddings:
|
| 480 |
+
raise HTTPException(status_code=400, detail="Không có embedding nào được tạo từ texts hoặc images")
|
| 481 |
+
|
| 482 |
+
# Final combined embedding
|
| 483 |
+
combined_embedding = np.mean(all_embeddings, axis=0)
|
| 484 |
+
|
| 485 |
+
# Normalize
|
| 486 |
+
combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)
|
| 487 |
+
|
| 488 |
+
# Index vào Qdrant
|
| 489 |
+
metadata = {
|
| 490 |
+
"texts": texts if texts else [],
|
| 491 |
+
"text_count": len(texts) if texts else 0,
|
| 492 |
+
"image_count": len(images) if images else 0,
|
| 493 |
+
"image_filenames": [img.filename for img in images] if images else []
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
result = qdrant_service.index_data(
|
| 497 |
+
doc_id=id,
|
| 498 |
+
embedding=combined_embedding,
|
| 499 |
+
metadata=metadata
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
return IndexResponse(
|
| 503 |
+
success=True,
|
| 504 |
+
id=result["original_id"], # Trả về MongoDB ObjectId
|
| 505 |
+
message=f"Đã index thành công document {result['original_id']} với {len(texts) if texts else 0} texts và {len(images) if images else 0} images (Qdrant UUID: {result['qdrant_id']})"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
except HTTPException:
|
| 509 |
+
raise
|
| 510 |
+
except Exception as e:
|
| 511 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
@app.post("/search", response_model=List[SearchResponse])
|
| 515 |
+
async def search(
|
| 516 |
+
text: Optional[str] = Form(None),
|
| 517 |
+
image: Optional[UploadFile] = File(None),
|
| 518 |
+
limit: int = Form(10),
|
| 519 |
+
score_threshold: Optional[float] = Form(None),
|
| 520 |
+
text_weight: float = Form(0.5),
|
| 521 |
+
image_weight: float = Form(0.5)
|
| 522 |
+
):
|
| 523 |
+
"""
|
| 524 |
+
Search similar documents bằng text và/hoặc image
|
| 525 |
+
|
| 526 |
+
Body:
|
| 527 |
+
- text: Query text (tiếng Việt supported)
|
| 528 |
+
- image: Query image (optional)
|
| 529 |
+
- limit: Số lượng kết quả (default: 10)
|
| 530 |
+
- score_threshold: Minimum confidence score (0-1)
|
| 531 |
+
- text_weight: Weight cho text search (default: 0.5)
|
| 532 |
+
- image_weight: Weight cho image search (default: 0.5)
|
| 533 |
+
|
| 534 |
+
Returns:
|
| 535 |
+
- List of results với id, confidence, và metadata
|
| 536 |
+
"""
|
| 537 |
+
try:
|
| 538 |
+
# Prepare query embeddings
|
| 539 |
+
text_embedding = None
|
| 540 |
+
image_embedding = None
|
| 541 |
+
|
| 542 |
+
# Encode text query
|
| 543 |
+
if text and text.strip():
|
| 544 |
+
text_embedding = embedding_service.encode_text(text)
|
| 545 |
+
|
| 546 |
+
# Encode image query
|
| 547 |
+
if image:
|
| 548 |
+
image_bytes = await image.read()
|
| 549 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 550 |
+
image_embedding = embedding_service.encode_image(pil_image)
|
| 551 |
+
|
| 552 |
+
# Validate input
|
| 553 |
+
if text_embedding is None and image_embedding is None:
|
| 554 |
+
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")
|
| 555 |
+
|
| 556 |
+
# Hybrid search với Qdrant
|
| 557 |
+
results = qdrant_service.hybrid_search(
|
| 558 |
+
text_embedding=text_embedding,
|
| 559 |
+
image_embedding=image_embedding,
|
| 560 |
+
text_weight=text_weight,
|
| 561 |
+
image_weight=image_weight,
|
| 562 |
+
limit=limit,
|
| 563 |
+
score_threshold=score_threshold,
|
| 564 |
+
ef=256 # High accuracy search
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
# Format response
|
| 568 |
+
return [
|
| 569 |
+
SearchResponse(
|
| 570 |
+
id=result["id"],
|
| 571 |
+
confidence=result["confidence"],
|
| 572 |
+
metadata=result["metadata"]
|
| 573 |
+
)
|
| 574 |
+
for result in results
|
| 575 |
+
]
|
| 576 |
+
|
| 577 |
+
except Exception as e:
|
| 578 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
@app.post("/search/text", response_model=List[SearchResponse])
|
| 582 |
+
async def search_by_text(
|
| 583 |
+
text: str = Form(...),
|
| 584 |
+
limit: int = Form(10),
|
| 585 |
+
score_threshold: Optional[float] = Form(None)
|
| 586 |
+
):
|
| 587 |
+
"""
|
| 588 |
+
Search chỉ bằng text (tiếng Việt)
|
| 589 |
+
|
| 590 |
+
Body:
|
| 591 |
+
- text: Query text (tiếng Việt)
|
| 592 |
+
- limit: Số lượng kết quả
|
| 593 |
+
- score_threshold: Minimum confidence score
|
| 594 |
+
|
| 595 |
+
Returns:
|
| 596 |
+
- List of results
|
| 597 |
+
"""
|
| 598 |
+
try:
|
| 599 |
+
# Encode text
|
| 600 |
+
text_embedding = embedding_service.encode_text(text)
|
| 601 |
+
|
| 602 |
+
# Search
|
| 603 |
+
results = qdrant_service.search(
|
| 604 |
+
query_embedding=text_embedding,
|
| 605 |
+
limit=limit,
|
| 606 |
+
score_threshold=score_threshold,
|
| 607 |
+
ef=256
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
return [
|
| 611 |
+
SearchResponse(
|
| 612 |
+
id=result["id"],
|
| 613 |
+
confidence=result["confidence"],
|
| 614 |
+
metadata=result["metadata"]
|
| 615 |
+
)
|
| 616 |
+
for result in results
|
| 617 |
+
]
|
| 618 |
+
|
| 619 |
+
except Exception as e:
|
| 620 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
@app.post("/search/image", response_model=List[SearchResponse])
|
| 624 |
+
async def search_by_image(
|
| 625 |
+
image: UploadFile = File(...),
|
| 626 |
+
limit: int = Form(10),
|
| 627 |
+
score_threshold: Optional[float] = Form(None)
|
| 628 |
+
):
|
| 629 |
+
"""
|
| 630 |
+
Search chỉ bằng image
|
| 631 |
+
|
| 632 |
+
Body:
|
| 633 |
+
- image: Query image
|
| 634 |
+
- limit: Số lượng kết quả
|
| 635 |
+
- score_threshold: Minimum confidence score
|
| 636 |
+
|
| 637 |
+
Returns:
|
| 638 |
+
- List of results
|
| 639 |
+
"""
|
| 640 |
+
try:
|
| 641 |
+
# Encode image
|
| 642 |
+
image_bytes = await image.read()
|
| 643 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 644 |
+
image_embedding = embedding_service.encode_image(pil_image)
|
| 645 |
+
|
| 646 |
+
# Search
|
| 647 |
+
results = qdrant_service.search(
|
| 648 |
+
query_embedding=image_embedding,
|
| 649 |
+
limit=limit,
|
| 650 |
+
score_threshold=score_threshold,
|
| 651 |
+
ef=256
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
return [
|
| 655 |
+
SearchResponse(
|
| 656 |
+
id=result["id"],
|
| 657 |
+
confidence=result["confidence"],
|
| 658 |
+
metadata=result["metadata"]
|
| 659 |
+
)
|
| 660 |
+
for result in results
|
| 661 |
+
]
|
| 662 |
+
|
| 663 |
+
except Exception as e:
|
| 664 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
@app.delete("/delete/{doc_id}")
|
| 668 |
+
async def delete_document(doc_id: str):
|
| 669 |
+
"""
|
| 670 |
+
Delete document by ID (MongoDB ObjectId hoặc UUID)
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
- doc_id: Document ID to delete
|
| 674 |
+
|
| 675 |
+
Returns:
|
| 676 |
+
- Success message
|
| 677 |
+
"""
|
| 678 |
+
try:
|
| 679 |
+
qdrant_service.delete_by_id(doc_id)
|
| 680 |
+
return {"success": True, "message": f"Đã xóa document {doc_id}"}
|
| 681 |
+
except Exception as e:
|
| 682 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
@app.get("/document/{doc_id}")
|
| 686 |
+
async def get_document(doc_id: str):
|
| 687 |
+
"""
|
| 688 |
+
Get document by ID (MongoDB ObjectId hoặc UUID)
|
| 689 |
+
|
| 690 |
+
Args:
|
| 691 |
+
- doc_id: Document ID (MongoDB ObjectId)
|
| 692 |
+
|
| 693 |
+
Returns:
|
| 694 |
+
- Document data
|
| 695 |
+
"""
|
| 696 |
+
try:
|
| 697 |
+
doc = qdrant_service.get_by_id(doc_id)
|
| 698 |
+
if doc:
|
| 699 |
+
return {
|
| 700 |
+
"success": True,
|
| 701 |
+
"data": doc
|
| 702 |
+
}
|
| 703 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
|
| 704 |
+
except HTTPException:
|
| 705 |
+
raise
|
| 706 |
+
except Exception as e:
|
| 707 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
@app.get("/stats")
|
| 711 |
+
async def get_stats():
|
| 712 |
+
"""
|
| 713 |
+
Lấy thông tin thống kê collection
|
| 714 |
+
|
| 715 |
+
Returns:
|
| 716 |
+
- Collection statistics
|
| 717 |
+
"""
|
| 718 |
+
try:
|
| 719 |
+
info = qdrant_service.get_collection_info()
|
| 720 |
+
return info
|
| 721 |
+
except Exception as e:
|
| 722 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
# ============================================
|
| 726 |
+
# ChatbotRAG Endpoints
|
| 727 |
+
# ============================================
|
| 728 |
+
|
| 729 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 730 |
+
async def chat(request: ChatRequest):
|
| 731 |
+
"""
|
| 732 |
+
Chat endpoint với Advanced RAG
|
| 733 |
+
|
| 734 |
+
Body:
|
| 735 |
+
- message: User message
|
| 736 |
+
- use_rag: Enable RAG retrieval (default: true)
|
| 737 |
+
- top_k: Number of documents to retrieve (default: 3)
|
| 738 |
+
- system_message: System prompt (optional)
|
| 739 |
+
- max_tokens: Max tokens for response (default: 512)
|
| 740 |
+
- temperature: Temperature for generation (default: 0.7)
|
| 741 |
+
- hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)
|
| 742 |
+
- use_advanced_rag: Use advanced RAG pipeline (default: true)
|
| 743 |
+
- use_query_expansion: Enable query expansion (default: true)
|
| 744 |
+
- use_reranking: Enable reranking (default: true)
|
| 745 |
+
- use_compression: Enable context compression (default: true)
|
| 746 |
+
- score_threshold: Minimum relevance score (default: 0.5)
|
| 747 |
+
|
| 748 |
+
Returns:
|
| 749 |
+
- response: Generated response
|
| 750 |
+
- context_used: Retrieved context documents
|
| 751 |
+
- timestamp: Response timestamp
|
| 752 |
+
- rag_stats: Statistics from RAG pipeline
|
| 753 |
+
"""
|
| 754 |
+
try:
|
| 755 |
+
# Retrieve context if RAG enabled
|
| 756 |
+
context_used = []
|
| 757 |
+
rag_stats = None
|
| 758 |
+
|
| 759 |
+
if request.use_rag:
|
| 760 |
+
if request.use_advanced_rag:
|
| 761 |
+
# Use Advanced RAG Pipeline
|
| 762 |
+
documents, stats = advanced_rag.hybrid_rag_pipeline(
|
| 763 |
+
query=request.message,
|
| 764 |
+
top_k=request.top_k,
|
| 765 |
+
score_threshold=request.score_threshold,
|
| 766 |
+
use_reranking=request.use_reranking,
|
| 767 |
+
use_compression=request.use_compression,
|
| 768 |
+
max_context_tokens=500
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
# Convert to dict format for compatibility
|
| 772 |
+
context_used = [
|
| 773 |
+
{
|
| 774 |
+
"id": doc.id,
|
| 775 |
+
"confidence": doc.confidence,
|
| 776 |
+
"metadata": doc.metadata
|
| 777 |
+
}
|
| 778 |
+
for doc in documents
|
| 779 |
+
]
|
| 780 |
+
rag_stats = stats
|
| 781 |
+
|
| 782 |
+
# Format context using advanced RAG formatter
|
| 783 |
+
context_text = advanced_rag.format_context_for_llm(documents)
|
| 784 |
+
|
| 785 |
+
else:
|
| 786 |
+
# Use basic RAG (original implementation)
|
| 787 |
+
query_embedding = embedding_service.encode_text(request.message)
|
| 788 |
+
|
| 789 |
+
results = qdrant_service.search(
|
| 790 |
+
query_embedding=query_embedding,
|
| 791 |
+
limit=request.top_k,
|
| 792 |
+
score_threshold=request.score_threshold
|
| 793 |
+
)
|
| 794 |
+
context_used = results
|
| 795 |
+
|
| 796 |
+
# Build context text (basic format)
|
| 797 |
+
context_text = "\n\nRelevant Context:\n"
|
| 798 |
+
for i, doc in enumerate(context_used, 1):
|
| 799 |
+
doc_text = doc["metadata"].get("text", "")
|
| 800 |
+
confidence = doc["confidence"]
|
| 801 |
+
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
|
| 802 |
+
|
| 803 |
+
# Build system message with context
|
| 804 |
+
if request.use_rag and context_used:
|
| 805 |
+
if request.use_advanced_rag:
|
| 806 |
+
# Use advanced prompt builder
|
| 807 |
+
system_message = advanced_rag.build_rag_prompt(
|
| 808 |
+
query=request.message,
|
| 809 |
+
context=context_text,
|
| 810 |
+
system_message=request.system_message
|
| 811 |
+
)
|
| 812 |
+
else:
|
| 813 |
+
# Basic prompt
|
| 814 |
+
system_message = f"{request.system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
|
| 815 |
+
else:
|
| 816 |
+
system_message = request.system_message
|
| 817 |
+
|
| 818 |
+
# Use token from request or fallback to env
|
| 819 |
+
token = request.hf_token or hf_token
|
| 820 |
+
# Generate response
|
| 821 |
+
if not token:
|
| 822 |
+
response = f"""[LLM Response Placeholder]
|
| 823 |
+
|
| 824 |
+
Context retrieved: {len(context_used)} documents
|
| 825 |
+
User question: {request.message}
|
| 826 |
+
|
| 827 |
+
To enable actual LLM generation:
|
| 828 |
+
1. Set HUGGINGFACE_TOKEN environment variable, OR
|
| 829 |
+
2. Pass hf_token in request body
|
| 830 |
+
|
| 831 |
+
Example:
|
| 832 |
+
{{
|
| 833 |
+
"message": "Your question",
|
| 834 |
+
"hf_token": "hf_xxxxxxxxxxxxx"
|
| 835 |
+
}}
|
| 836 |
+
"""
|
| 837 |
+
else:
|
| 838 |
+
try:
|
| 839 |
+
client = InferenceClient(
|
| 840 |
+
token=hf_token,
|
| 841 |
+
model="openai/gpt-oss-20b"
|
| 842 |
+
)
|
| 843 |
+
|
| 844 |
+
# Build messages
|
| 845 |
+
messages = [
|
| 846 |
+
{"role": "system", "content": system_message},
|
| 847 |
+
{"role": "user", "content": request.message}
|
| 848 |
+
]
|
| 849 |
+
|
| 850 |
+
# Generate response
|
| 851 |
+
response = ""
|
| 852 |
+
for msg in client.chat_completion(
|
| 853 |
+
messages,
|
| 854 |
+
max_tokens=request.max_tokens,
|
| 855 |
+
stream=True,
|
| 856 |
+
temperature=request.temperature,
|
| 857 |
+
top_p=request.top_p,
|
| 858 |
+
):
|
| 859 |
+
choices = msg.choices
|
| 860 |
+
if len(choices) and choices[0].delta.content:
|
| 861 |
+
response += choices[0].delta.content
|
| 862 |
+
|
| 863 |
+
except Exception as e:
|
| 864 |
+
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
|
| 865 |
+
|
| 866 |
+
# Save to history
|
| 867 |
+
chat_data = {
|
| 868 |
+
"user_message": request.message,
|
| 869 |
+
"assistant_response": response,
|
| 870 |
+
"context_used": context_used,
|
| 871 |
+
"timestamp": datetime.utcnow()
|
| 872 |
+
}
|
| 873 |
+
chat_history_collection.insert_one(chat_data)
|
| 874 |
+
|
| 875 |
+
return ChatResponse(
|
| 876 |
+
response=response,
|
| 877 |
+
context_used=context_used,
|
| 878 |
+
timestamp=datetime.utcnow().isoformat(),
|
| 879 |
+
rag_stats=rag_stats
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
except Exception as e:
|
| 883 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
@app.post("/documents", response_model=AddDocumentResponse)
|
| 887 |
+
async def add_document(request: AddDocumentRequest):
|
| 888 |
+
"""
|
| 889 |
+
Add document to knowledge base
|
| 890 |
+
|
| 891 |
+
Body:
|
| 892 |
+
- text: Document text
|
| 893 |
+
- metadata: Additional metadata (optional)
|
| 894 |
+
|
| 895 |
+
Returns:
|
| 896 |
+
- success: True/False
|
| 897 |
+
- doc_id: MongoDB document ID
|
| 898 |
+
- message: Status message
|
| 899 |
+
"""
|
| 900 |
+
try:
|
| 901 |
+
# Save to MongoDB
|
| 902 |
+
doc_data = {
|
| 903 |
+
"text": request.text,
|
| 904 |
+
"metadata": request.metadata or {},
|
| 905 |
+
"created_at": datetime.utcnow()
|
| 906 |
+
}
|
| 907 |
+
result = documents_collection.insert_one(doc_data)
|
| 908 |
+
doc_id = str(result.inserted_id)
|
| 909 |
+
|
| 910 |
+
# Generate embedding
|
| 911 |
+
embedding = embedding_service.encode_text(request.text)
|
| 912 |
+
|
| 913 |
+
# Index to Qdrant
|
| 914 |
+
qdrant_service.index_data(
|
| 915 |
+
doc_id=doc_id,
|
| 916 |
+
embedding=embedding,
|
| 917 |
+
metadata={
|
| 918 |
+
"text": request.text,
|
| 919 |
+
"source": "api",
|
| 920 |
+
**(request.metadata or {})
|
| 921 |
+
}
|
| 922 |
+
)
|
| 923 |
+
|
| 924 |
+
return AddDocumentResponse(
|
| 925 |
+
success=True,
|
| 926 |
+
doc_id=doc_id,
|
| 927 |
+
message=f"Document added successfully with ID: {doc_id}"
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
except Exception as e:
|
| 931 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
@app.post("/rag/search", response_model=List[SearchResponse])
|
| 935 |
+
async def rag_search(
|
| 936 |
+
query: str = Form(...),
|
| 937 |
+
top_k: int = Form(5),
|
| 938 |
+
score_threshold: Optional[float] = Form(0.5)
|
| 939 |
+
):
|
| 940 |
+
"""
|
| 941 |
+
Search in knowledge base
|
| 942 |
+
|
| 943 |
+
Body:
|
| 944 |
+
- query: Search query
|
| 945 |
+
- top_k: Number of results (default: 5)
|
| 946 |
+
- score_threshold: Minimum score (default: 0.5)
|
| 947 |
+
|
| 948 |
+
Returns:
|
| 949 |
+
- results: List of matching documents
|
| 950 |
+
"""
|
| 951 |
+
try:
|
| 952 |
+
# Generate query embedding
|
| 953 |
+
query_embedding = embedding_service.encode_text(query)
|
| 954 |
+
|
| 955 |
+
# Search in Qdrant
|
| 956 |
+
results = qdrant_service.search(
|
| 957 |
+
query_embedding=query_embedding,
|
| 958 |
+
limit=top_k,
|
| 959 |
+
score_threshold=score_threshold
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
return [
|
| 963 |
+
SearchResponse(
|
| 964 |
+
id=result["id"],
|
| 965 |
+
confidence=result["confidence"],
|
| 966 |
+
metadata=result["metadata"]
|
| 967 |
+
)
|
| 968 |
+
for result in results
|
| 969 |
+
]
|
| 970 |
+
|
| 971 |
+
except Exception as e:
|
| 972 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
@app.get("/history")
|
| 976 |
+
async def get_history(limit: int = 10, skip: int = 0):
|
| 977 |
+
"""
|
| 978 |
+
Get chat history
|
| 979 |
+
|
| 980 |
+
Query params:
|
| 981 |
+
- limit: Number of messages to return (default: 10)
|
| 982 |
+
- skip: Number of messages to skip (default: 0)
|
| 983 |
+
|
| 984 |
+
Returns:
|
| 985 |
+
- history: List of chat messages
|
| 986 |
+
"""
|
| 987 |
+
try:
|
| 988 |
+
history = list(
|
| 989 |
+
chat_history_collection
|
| 990 |
+
.find({}, {"_id": 0})
|
| 991 |
+
.sort("timestamp", -1)
|
| 992 |
+
.skip(skip)
|
| 993 |
+
.limit(limit)
|
| 994 |
+
)
|
| 995 |
+
|
| 996 |
+
# Convert datetime to string
|
| 997 |
+
for msg in history:
|
| 998 |
+
if "timestamp" in msg:
|
| 999 |
+
msg["timestamp"] = msg["timestamp"].isoformat()
|
| 1000 |
+
|
| 1001 |
+
return {
|
| 1002 |
+
"history": history,
|
| 1003 |
+
"total": chat_history_collection.count_documents({})
|
| 1004 |
+
}
|
| 1005 |
+
|
| 1006 |
+
except Exception as e:
|
| 1007 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
@app.delete("/documents/{doc_id}")
|
| 1011 |
+
async def delete_document_from_kb(doc_id: str):
|
| 1012 |
+
"""
|
| 1013 |
+
Delete document from knowledge base
|
| 1014 |
+
|
| 1015 |
+
Args:
|
| 1016 |
+
- doc_id: Document ID (MongoDB ObjectId)
|
| 1017 |
+
|
| 1018 |
+
Returns:
|
| 1019 |
+
- success: True/False
|
| 1020 |
+
- message: Status message
|
| 1021 |
+
"""
|
| 1022 |
+
try:
|
| 1023 |
+
# Delete from MongoDB
|
| 1024 |
+
result = documents_collection.delete_one({"_id": doc_id})
|
| 1025 |
+
|
| 1026 |
+
# Delete from Qdrant
|
| 1027 |
+
if result.deleted_count > 0:
|
| 1028 |
+
qdrant_service.delete_by_id(doc_id)
|
| 1029 |
+
return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
|
| 1030 |
+
else:
|
| 1031 |
+
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
|
| 1032 |
+
|
| 1033 |
+
except HTTPException:
|
| 1034 |
+
raise
|
| 1035 |
+
except Exception as e:
|
| 1036 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 1037 |
+
|
| 1038 |
+
|
| 1039 |
+
@app.post("/upload-pdf", response_model=UploadPDFResponse)
|
| 1040 |
+
async def upload_pdf(
|
| 1041 |
+
file: UploadFile = File(...),
|
| 1042 |
+
document_id: Optional[str] = Form(None),
|
| 1043 |
+
title: Optional[str] = Form(None),
|
| 1044 |
+
description: Optional[str] = Form(None),
|
| 1045 |
+
category: Optional[str] = Form(None)
|
| 1046 |
+
):
|
| 1047 |
+
"""
|
| 1048 |
+
Upload and index PDF file into knowledge base
|
| 1049 |
+
|
| 1050 |
+
Body (multipart/form-data):
|
| 1051 |
+
- file: PDF file (required)
|
| 1052 |
+
- document_id: Custom document ID (optional, auto-generated if not provided)
|
| 1053 |
+
- title: Document title (optional)
|
| 1054 |
+
- description: Document description (optional)
|
| 1055 |
+
- category: Document category (optional, e.g., "user_guide", "faq")
|
| 1056 |
+
|
| 1057 |
+
Returns:
|
| 1058 |
+
- success: True/False
|
| 1059 |
+
- document_id: Document ID
|
| 1060 |
+
- filename: Original filename
|
| 1061 |
+
- chunks_indexed: Number of chunks created
|
| 1062 |
+
- message: Status message
|
| 1063 |
+
|
| 1064 |
+
Example:
|
| 1065 |
+
```bash
|
| 1066 |
+
curl -X POST "http://localhost:8000/upload-pdf" \
|
| 1067 |
+
-F "file=@user_guide.pdf" \
|
| 1068 |
+
-F "title=Hướng dẫn sử dụng ChatbotRAG" \
|
| 1069 |
+
-F "category=user_guide"
|
| 1070 |
+
```
|
| 1071 |
+
"""
|
| 1072 |
+
try:
|
| 1073 |
+
# Validate file type
|
| 1074 |
+
if not file.filename.endswith('.pdf'):
|
| 1075 |
+
raise HTTPException(status_code=400, detail="Only PDF files are allowed")
|
| 1076 |
+
|
| 1077 |
+
# Generate document ID if not provided
|
| 1078 |
+
if not document_id:
|
| 1079 |
+
from datetime import datetime
|
| 1080 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 1081 |
+
document_id = f"pdf_{timestamp}"
|
| 1082 |
+
|
| 1083 |
+
# Read PDF bytes
|
| 1084 |
+
pdf_bytes = await file.read()
|
| 1085 |
+
|
| 1086 |
+
# Prepare metadata
|
| 1087 |
+
metadata = {}
|
| 1088 |
+
if title:
|
| 1089 |
+
metadata['title'] = title
|
| 1090 |
+
if description:
|
| 1091 |
+
metadata['description'] = description
|
| 1092 |
+
if category:
|
| 1093 |
+
metadata['category'] = category
|
| 1094 |
+
|
| 1095 |
+
# Index PDF
|
| 1096 |
+
result = pdf_indexer.index_pdf_bytes(
|
| 1097 |
+
pdf_bytes=pdf_bytes,
|
| 1098 |
+
document_id=document_id,
|
| 1099 |
+
filename=file.filename,
|
| 1100 |
+
document_metadata=metadata
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
return UploadPDFResponse(
|
| 1104 |
+
success=True,
|
| 1105 |
+
document_id=result['document_id'],
|
| 1106 |
+
filename=result['filename'],
|
| 1107 |
+
chunks_indexed=result['chunks_indexed'],
|
| 1108 |
+
message=f"PDF '{file.filename}' đã được index thành công với {result['chunks_indexed']} chunks"
|
| 1109 |
+
)
|
| 1110 |
+
|
| 1111 |
+
except HTTPException:
|
| 1112 |
+
raise
|
| 1113 |
+
except Exception as e:
|
| 1114 |
+
raise HTTPException(status_code=500, detail=f"Error uploading PDF: {str(e)}")
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
@app.get("/documents/pdf")
|
| 1118 |
+
async def list_pdf_documents():
|
| 1119 |
+
"""
|
| 1120 |
+
List all PDF documents in knowledge base
|
| 1121 |
+
|
| 1122 |
+
Returns:
|
| 1123 |
+
- documents: List of PDF documents with metadata
|
| 1124 |
+
"""
|
| 1125 |
+
try:
|
| 1126 |
+
docs = list(documents_collection.find(
|
| 1127 |
+
{"type": "pdf"},
|
| 1128 |
+
{"_id": 0}
|
| 1129 |
+
))
|
| 1130 |
+
return {"documents": docs, "total": len(docs)}
|
| 1131 |
+
except Exception as e:
|
| 1132 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 1133 |
+
|
| 1134 |
+
|
| 1135 |
+
@app.delete("/documents/pdf/{document_id}")
|
| 1136 |
+
async def delete_pdf_document(document_id: str):
|
| 1137 |
+
"""
|
| 1138 |
+
Delete PDF document and all its chunks from knowledge base
|
| 1139 |
+
|
| 1140 |
+
Args:
|
| 1141 |
+
- document_id: Document ID
|
| 1142 |
+
|
| 1143 |
+
Returns:
|
| 1144 |
+
- success: True/False
|
| 1145 |
+
- message: Status message
|
| 1146 |
+
"""
|
| 1147 |
+
try:
|
| 1148 |
+
# Get document info
|
| 1149 |
+
doc = documents_collection.find_one({"document_id": document_id, "type": "pdf"})
|
| 1150 |
+
|
| 1151 |
+
if not doc:
|
| 1152 |
+
raise HTTPException(status_code=404, detail=f"PDF document {document_id} not found")
|
| 1153 |
+
|
| 1154 |
+
# Delete all chunks from Qdrant
|
| 1155 |
+
chunk_ids = doc.get('chunk_ids', [])
|
| 1156 |
+
for chunk_id in chunk_ids:
|
| 1157 |
+
try:
|
| 1158 |
+
qdrant_service.delete_by_id(chunk_id)
|
| 1159 |
+
except:
|
| 1160 |
+
pass # Chunk might already be deleted
|
| 1161 |
+
|
| 1162 |
+
# Delete from MongoDB
|
| 1163 |
+
documents_collection.delete_one({"document_id": document_id})
|
| 1164 |
+
|
| 1165 |
+
return {
|
| 1166 |
+
"success": True,
|
| 1167 |
+
"message": f"PDF document {document_id} and {len(chunk_ids)} chunks deleted"
|
| 1168 |
+
}
|
| 1169 |
+
|
| 1170 |
+
except HTTPException:
|
| 1171 |
+
raise
|
| 1172 |
+
except Exception as e:
|
| 1173 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
@app.post("/upload-pdf-multimodal", response_model=UploadPDFResponse)
|
| 1177 |
+
async def upload_pdf_multimodal(
|
| 1178 |
+
file: UploadFile = File(...),
|
| 1179 |
+
document_id: Optional[str] = Form(None),
|
| 1180 |
+
title: Optional[str] = Form(None),
|
| 1181 |
+
description: Optional[str] = Form(None),
|
| 1182 |
+
category: Optional[str] = Form(None)
|
| 1183 |
+
):
|
| 1184 |
+
"""
|
| 1185 |
+
Upload PDF with text and image URLs (for user guides with screenshots)
|
| 1186 |
+
|
| 1187 |
+
This endpoint is optimized for PDFs containing:
|
| 1188 |
+
- Text instructions
|
| 1189 |
+
- Image URLs (http://... or https://...)
|
| 1190 |
+
- Markdown images: 
|
| 1191 |
+
- HTML images: <img src="url">
|
| 1192 |
+
|
| 1193 |
+
The system will:
|
| 1194 |
+
1. Extract text from PDF
|
| 1195 |
+
2. Detect all image URLs in the text
|
| 1196 |
+
3. Link images to their corresponding text chunks
|
| 1197 |
+
4. Store image URLs in metadata
|
| 1198 |
+
5. Return images along with text during chat
|
| 1199 |
+
|
| 1200 |
+
Body (multipart/form-data):
|
| 1201 |
+
- file: PDF file (required)
|
| 1202 |
+
- document_id: Custom document ID (optional, auto-generated if not provided)
|
| 1203 |
+
- title: Document title (optional)
|
| 1204 |
+
- description: Document description (optional)
|
| 1205 |
+
- category: Document category (optional, e.g., "user_guide", "tutorial")
|
| 1206 |
+
|
| 1207 |
+
Returns:
|
| 1208 |
+
- success: True/False
|
| 1209 |
+
- document_id: Document ID
|
| 1210 |
+
- filename: Original filename
|
| 1211 |
+
- chunks_indexed: Number of chunks created
|
| 1212 |
+
- message: Status message (includes image count)
|
| 1213 |
+
|
| 1214 |
+
Example:
|
| 1215 |
+
```bash
|
| 1216 |
+
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
|
| 1217 |
+
-F "file=@user_guide_with_images.pdf" \
|
| 1218 |
+
-F "title=Hướng dẫn có ảnh minh họa" \
|
| 1219 |
+
-F "category=user_guide"
|
| 1220 |
+
```
|
| 1221 |
+
|
| 1222 |
+
Example Response:
|
| 1223 |
+
```json
|
| 1224 |
+
{
|
| 1225 |
+
"success": true,
|
| 1226 |
+
"document_id": "pdf_20251029_150000",
|
| 1227 |
+
"filename": "user_guide_with_images.pdf",
|
| 1228 |
+
"chunks_indexed": 25,
|
| 1229 |
+
"message": "PDF 'user_guide_with_images.pdf' indexed with 25 chunks and 15 images"
|
| 1230 |
+
}
|
| 1231 |
+
```
|
| 1232 |
+
"""
|
| 1233 |
+
try:
|
| 1234 |
+
# Validate file type
|
| 1235 |
+
if not file.filename.endswith('.pdf'):
|
| 1236 |
+
raise HTTPException(status_code=400, detail="Only PDF files are allowed")
|
| 1237 |
+
|
| 1238 |
+
# Generate document ID if not provided
|
| 1239 |
+
if not document_id:
|
| 1240 |
+
from datetime import datetime
|
| 1241 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 1242 |
+
document_id = f"pdf_multimodal_{timestamp}"
|
| 1243 |
+
|
| 1244 |
+
# Read PDF bytes
|
| 1245 |
+
pdf_bytes = await file.read()
|
| 1246 |
+
|
| 1247 |
+
# Prepare metadata
|
| 1248 |
+
metadata = {'type': 'multimodal'}
|
| 1249 |
+
if title:
|
| 1250 |
+
metadata['title'] = title
|
| 1251 |
+
if description:
|
| 1252 |
+
metadata['description'] = description
|
| 1253 |
+
if category:
|
| 1254 |
+
metadata['category'] = category
|
| 1255 |
+
|
| 1256 |
+
# Index PDF with multimodal parser
|
| 1257 |
+
result = multimodal_pdf_indexer.index_pdf_bytes(
|
| 1258 |
+
pdf_bytes=pdf_bytes,
|
| 1259 |
+
document_id=document_id,
|
| 1260 |
+
filename=file.filename,
|
| 1261 |
+
document_metadata=metadata
|
| 1262 |
+
)
|
| 1263 |
+
|
| 1264 |
+
return UploadPDFResponse(
|
| 1265 |
+
success=True,
|
| 1266 |
+
document_id=result['document_id'],
|
| 1267 |
+
filename=result['filename'],
|
| 1268 |
+
chunks_indexed=result['chunks_indexed'],
|
| 1269 |
+
message=f"PDF '{file.filename}' indexed successfully with {result['chunks_indexed']} chunks and {result.get('images_found', 0)} images"
|
| 1270 |
+
)
|
| 1271 |
+
|
| 1272 |
+
except HTTPException:
|
| 1273 |
+
raise
|
| 1274 |
+
except Exception as e:
|
| 1275 |
+
raise HTTPException(status_code=500, detail=f"Error uploading multimodal PDF: {str(e)}")
|
| 1276 |
+
|
| 1277 |
+
|
| 1278 |
+
if __name__ == "__main__":
|
| 1279 |
+
import uvicorn
|
| 1280 |
+
uvicorn.run(
|
| 1281 |
+
app,
|
| 1282 |
+
host="0.0.0.0",
|
| 1283 |
+
port=8000,
|
| 1284 |
+
log_level="info"
|
| 1285 |
+
)
|
multimodal_pdf_parser.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Enhanced Multimodal PDF Parser for PDFs with Text + Image URLs
|
| 3 |
+
Extracts text, detects image URLs, and links them together
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pypdfium2 as pdfium
|
| 7 |
+
from typing import List, Dict, Optional, Tuple
|
| 8 |
+
import re
|
| 9 |
+
from dataclasses import dataclass, field
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class MultimodalChunk:
|
| 14 |
+
"""Represents a chunk with text and associated images"""
|
| 15 |
+
text: str
|
| 16 |
+
page_number: int
|
| 17 |
+
chunk_index: int
|
| 18 |
+
image_urls: List[str] = field(default_factory=list)
|
| 19 |
+
metadata: Dict = field(default_factory=dict)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class MultimodalPDFParser:
|
| 23 |
+
"""
|
| 24 |
+
Enhanced PDF Parser that extracts text and image URLs
|
| 25 |
+
Perfect for user guides with screenshots and visual instructions
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
chunk_size: int = 500,
|
| 31 |
+
chunk_overlap: int = 50,
|
| 32 |
+
min_chunk_size: int = 50,
|
| 33 |
+
extract_images: bool = True
|
| 34 |
+
):
|
| 35 |
+
self.chunk_size = chunk_size
|
| 36 |
+
self.chunk_overlap = chunk_overlap
|
| 37 |
+
self.min_chunk_size = min_chunk_size
|
| 38 |
+
self.extract_images = extract_images
|
| 39 |
+
|
| 40 |
+
# URL patterns
|
| 41 |
+
self.url_patterns = [
|
| 42 |
+
# Standard URLs
|
| 43 |
+
r'https?://[^\s<>"{}|\\^`\[\]]+',
|
| 44 |
+
# Markdown images: 
|
| 45 |
+
r'!\[.*?\]\((https?://[^\s)]+)\)',
|
| 46 |
+
# HTML images: <img src="url">
|
| 47 |
+
r'<img[^>]+src=["\']([^"\']+)["\']',
|
| 48 |
+
# Direct image extensions
|
| 49 |
+
r'https?://[^\s<>"{}|\\^`\[\]]+\.(?:jpg|jpeg|png|gif|bmp|svg|webp)',
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
def extract_image_urls(self, text: str) -> List[str]:
|
| 53 |
+
"""
|
| 54 |
+
Extract all image URLs from text
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
text: Text content
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
List of image URLs found
|
| 61 |
+
"""
|
| 62 |
+
urls = []
|
| 63 |
+
|
| 64 |
+
for pattern in self.url_patterns:
|
| 65 |
+
matches = re.findall(pattern, text, re.IGNORECASE)
|
| 66 |
+
urls.extend(matches)
|
| 67 |
+
|
| 68 |
+
# Remove duplicates while preserving order
|
| 69 |
+
seen = set()
|
| 70 |
+
unique_urls = []
|
| 71 |
+
for url in urls:
|
| 72 |
+
if url not in seen:
|
| 73 |
+
seen.add(url)
|
| 74 |
+
unique_urls.append(url)
|
| 75 |
+
|
| 76 |
+
return unique_urls
|
| 77 |
+
|
| 78 |
+
def extract_text_from_pdf(self, pdf_path: str) -> Dict[int, Tuple[str, List[str]]]:
|
| 79 |
+
"""
|
| 80 |
+
Extract text and image URLs from PDF
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
pdf_path: Path to PDF file
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
Dictionary mapping page number to (text, image_urls) tuple
|
| 87 |
+
"""
|
| 88 |
+
pdf_pages = {}
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
pdf = pdfium.PdfDocument(pdf_path)
|
| 92 |
+
|
| 93 |
+
for page_num in range(len(pdf)):
|
| 94 |
+
page = pdf[page_num]
|
| 95 |
+
textpage = page.get_textpage()
|
| 96 |
+
text = textpage.get_text_range()
|
| 97 |
+
|
| 98 |
+
# Clean text
|
| 99 |
+
text = self._clean_text(text)
|
| 100 |
+
|
| 101 |
+
# Extract image URLs if enabled
|
| 102 |
+
image_urls = []
|
| 103 |
+
if self.extract_images:
|
| 104 |
+
image_urls = self.extract_image_urls(text)
|
| 105 |
+
|
| 106 |
+
pdf_pages[page_num + 1] = (text, image_urls)
|
| 107 |
+
|
| 108 |
+
return pdf_pages
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
raise Exception(f"Error reading PDF: {str(e)}")
|
| 112 |
+
|
| 113 |
+
def _clean_text(self, text: str) -> str:
|
| 114 |
+
"""Clean extracted text"""
|
| 115 |
+
# Remove excessive whitespace
|
| 116 |
+
text = re.sub(r'\s+', ' ', text)
|
| 117 |
+
# Remove special characters
|
| 118 |
+
text = text.replace('\x00', '')
|
| 119 |
+
return text.strip()
|
| 120 |
+
|
| 121 |
+
def chunk_text_with_images(
|
| 122 |
+
self,
|
| 123 |
+
text: str,
|
| 124 |
+
image_urls: List[str],
|
| 125 |
+
page_number: int
|
| 126 |
+
) -> List[MultimodalChunk]:
|
| 127 |
+
"""
|
| 128 |
+
Split text into chunks and associate images with relevant chunks
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
text: Text to chunk
|
| 132 |
+
image_urls: Image URLs from the page
|
| 133 |
+
page_number: Page number
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
List of MultimodalChunk objects
|
| 137 |
+
"""
|
| 138 |
+
# Split into words
|
| 139 |
+
words = text.split()
|
| 140 |
+
|
| 141 |
+
if len(words) < self.min_chunk_size:
|
| 142 |
+
if len(words) > 0:
|
| 143 |
+
return [MultimodalChunk(
|
| 144 |
+
text=text,
|
| 145 |
+
page_number=page_number,
|
| 146 |
+
chunk_index=0,
|
| 147 |
+
image_urls=image_urls, # All images go to single chunk
|
| 148 |
+
metadata={'page': page_number, 'chunk': 0}
|
| 149 |
+
)]
|
| 150 |
+
return []
|
| 151 |
+
|
| 152 |
+
chunks = []
|
| 153 |
+
chunk_index = 0
|
| 154 |
+
start = 0
|
| 155 |
+
|
| 156 |
+
# Calculate how to distribute images across chunks
|
| 157 |
+
images_per_chunk = len(image_urls) // max(1, len(words) // self.chunk_size) if image_urls else 0
|
| 158 |
+
image_index = 0
|
| 159 |
+
|
| 160 |
+
while start < len(words):
|
| 161 |
+
end = min(start + self.chunk_size, len(words))
|
| 162 |
+
chunk_words = words[start:end]
|
| 163 |
+
chunk_text = ' '.join(chunk_words)
|
| 164 |
+
|
| 165 |
+
# Assign images to this chunk
|
| 166 |
+
chunk_images = []
|
| 167 |
+
if image_urls:
|
| 168 |
+
# Simple strategy: distribute images evenly
|
| 169 |
+
# or detect if URL appears in chunk text
|
| 170 |
+
for url in image_urls:
|
| 171 |
+
if url in chunk_text:
|
| 172 |
+
chunk_images.append(url)
|
| 173 |
+
|
| 174 |
+
# If no URLs found in text, distribute evenly
|
| 175 |
+
if not chunk_images and image_index < len(image_urls):
|
| 176 |
+
# Assign remaining images to chunks
|
| 177 |
+
num_imgs = min(images_per_chunk + 1, len(image_urls) - image_index)
|
| 178 |
+
chunk_images = image_urls[image_index:image_index + num_imgs]
|
| 179 |
+
image_index += num_imgs
|
| 180 |
+
|
| 181 |
+
chunks.append(MultimodalChunk(
|
| 182 |
+
text=chunk_text,
|
| 183 |
+
page_number=page_number,
|
| 184 |
+
chunk_index=chunk_index,
|
| 185 |
+
image_urls=chunk_images,
|
| 186 |
+
metadata={
|
| 187 |
+
'page': page_number,
|
| 188 |
+
'chunk': chunk_index,
|
| 189 |
+
'start_word': start,
|
| 190 |
+
'end_word': end,
|
| 191 |
+
'has_images': len(chunk_images) > 0,
|
| 192 |
+
'num_images': len(chunk_images)
|
| 193 |
+
}
|
| 194 |
+
))
|
| 195 |
+
|
| 196 |
+
chunk_index += 1
|
| 197 |
+
start = end - self.chunk_overlap
|
| 198 |
+
|
| 199 |
+
if start >= len(words) - self.min_chunk_size:
|
| 200 |
+
break
|
| 201 |
+
|
| 202 |
+
return chunks
|
| 203 |
+
|
| 204 |
+
def parse_pdf(
|
| 205 |
+
self,
|
| 206 |
+
pdf_path: str,
|
| 207 |
+
document_metadata: Optional[Dict] = None
|
| 208 |
+
) -> List[MultimodalChunk]:
|
| 209 |
+
"""
|
| 210 |
+
Parse PDF into multimodal chunks
|
| 211 |
+
|
| 212 |
+
Args:
|
| 213 |
+
pdf_path: Path to PDF file
|
| 214 |
+
document_metadata: Additional metadata
|
| 215 |
+
|
| 216 |
+
Returns:
|
| 217 |
+
List of MultimodalChunk objects
|
| 218 |
+
"""
|
| 219 |
+
pages_data = self.extract_text_from_pdf(pdf_path)
|
| 220 |
+
|
| 221 |
+
all_chunks = []
|
| 222 |
+
for page_num, (text, image_urls) in pages_data.items():
|
| 223 |
+
chunks = self.chunk_text_with_images(text, image_urls, page_num)
|
| 224 |
+
|
| 225 |
+
# Add document metadata
|
| 226 |
+
if document_metadata:
|
| 227 |
+
for chunk in chunks:
|
| 228 |
+
chunk.metadata.update(document_metadata)
|
| 229 |
+
|
| 230 |
+
all_chunks.extend(chunks)
|
| 231 |
+
|
| 232 |
+
return all_chunks
|
| 233 |
+
|
| 234 |
+
def parse_pdf_bytes(
|
| 235 |
+
self,
|
| 236 |
+
pdf_bytes: bytes,
|
| 237 |
+
document_metadata: Optional[Dict] = None
|
| 238 |
+
) -> List[MultimodalChunk]:
|
| 239 |
+
"""Parse PDF from bytes"""
|
| 240 |
+
import tempfile
|
| 241 |
+
import os
|
| 242 |
+
|
| 243 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 244 |
+
tmp.write(pdf_bytes)
|
| 245 |
+
tmp_path = tmp.name
|
| 246 |
+
|
| 247 |
+
try:
|
| 248 |
+
chunks = self.parse_pdf(tmp_path, document_metadata)
|
| 249 |
+
return chunks
|
| 250 |
+
finally:
|
| 251 |
+
if os.path.exists(tmp_path):
|
| 252 |
+
os.unlink(tmp_path)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class MultimodalPDFIndexer:
|
| 256 |
+
"""Index multimodal PDF chunks into RAG system"""
|
| 257 |
+
|
| 258 |
+
def __init__(self, embedding_service, qdrant_service, documents_collection):
|
| 259 |
+
self.embedding_service = embedding_service
|
| 260 |
+
self.qdrant_service = qdrant_service
|
| 261 |
+
self.documents_collection = documents_collection
|
| 262 |
+
self.parser = MultimodalPDFParser()
|
| 263 |
+
|
| 264 |
+
def index_pdf(
|
| 265 |
+
self,
|
| 266 |
+
pdf_path: str,
|
| 267 |
+
document_id: str,
|
| 268 |
+
document_metadata: Optional[Dict] = None
|
| 269 |
+
) -> Dict:
|
| 270 |
+
"""Index PDF with image URLs"""
|
| 271 |
+
chunks = self.parser.parse_pdf(pdf_path, document_metadata)
|
| 272 |
+
|
| 273 |
+
indexed_count = 0
|
| 274 |
+
chunk_ids = []
|
| 275 |
+
total_images = 0
|
| 276 |
+
|
| 277 |
+
for chunk in chunks:
|
| 278 |
+
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
|
| 279 |
+
|
| 280 |
+
# Generate embedding (text-based)
|
| 281 |
+
embedding = self.embedding_service.encode_text(chunk.text)
|
| 282 |
+
|
| 283 |
+
# Prepare metadata with image URLs
|
| 284 |
+
metadata = {
|
| 285 |
+
'text': chunk.text,
|
| 286 |
+
'document_id': document_id,
|
| 287 |
+
'page': chunk.page_number,
|
| 288 |
+
'chunk_index': chunk.chunk_index,
|
| 289 |
+
'source': 'pdf',
|
| 290 |
+
'has_images': len(chunk.image_urls) > 0,
|
| 291 |
+
'image_urls': chunk.image_urls, # Store image URLs!
|
| 292 |
+
'num_images': len(chunk.image_urls),
|
| 293 |
+
**chunk.metadata
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
# Index to Qdrant
|
| 297 |
+
self.qdrant_service.index_data(
|
| 298 |
+
doc_id=chunk_id,
|
| 299 |
+
embedding=embedding,
|
| 300 |
+
metadata=metadata
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
chunk_ids.append(chunk_id)
|
| 304 |
+
indexed_count += 1
|
| 305 |
+
total_images += len(chunk.image_urls)
|
| 306 |
+
|
| 307 |
+
# Save document info
|
| 308 |
+
doc_info = {
|
| 309 |
+
'document_id': document_id,
|
| 310 |
+
'type': 'multimodal_pdf',
|
| 311 |
+
'file_path': pdf_path,
|
| 312 |
+
'num_chunks': indexed_count,
|
| 313 |
+
'total_images': total_images,
|
| 314 |
+
'chunk_ids': chunk_ids,
|
| 315 |
+
'metadata': document_metadata or {}
|
| 316 |
+
}
|
| 317 |
+
self.documents_collection.insert_one(doc_info)
|
| 318 |
+
|
| 319 |
+
return {
|
| 320 |
+
'success': True,
|
| 321 |
+
'document_id': document_id,
|
| 322 |
+
'chunks_indexed': indexed_count,
|
| 323 |
+
'images_found': total_images,
|
| 324 |
+
'chunk_ids': chunk_ids[:5]
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
def index_pdf_bytes(
|
| 328 |
+
self,
|
| 329 |
+
pdf_bytes: bytes,
|
| 330 |
+
document_id: str,
|
| 331 |
+
filename: str,
|
| 332 |
+
document_metadata: Optional[Dict] = None
|
| 333 |
+
) -> Dict:
|
| 334 |
+
"""Index PDF from bytes"""
|
| 335 |
+
metadata = document_metadata or {}
|
| 336 |
+
metadata['filename'] = filename
|
| 337 |
+
|
| 338 |
+
chunks = self.parser.parse_pdf_bytes(pdf_bytes, metadata)
|
| 339 |
+
|
| 340 |
+
indexed_count = 0
|
| 341 |
+
chunk_ids = []
|
| 342 |
+
total_images = 0
|
| 343 |
+
|
| 344 |
+
for chunk in chunks:
|
| 345 |
+
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
|
| 346 |
+
|
| 347 |
+
embedding = self.embedding_service.encode_text(chunk.text)
|
| 348 |
+
|
| 349 |
+
metadata = {
|
| 350 |
+
'text': chunk.text,
|
| 351 |
+
'document_id': document_id,
|
| 352 |
+
'page': chunk.page_number,
|
| 353 |
+
'chunk_index': chunk.chunk_index,
|
| 354 |
+
'source': 'multimodal_pdf',
|
| 355 |
+
'filename': filename,
|
| 356 |
+
'has_images': len(chunk.image_urls) > 0,
|
| 357 |
+
'image_urls': chunk.image_urls,
|
| 358 |
+
'num_images': len(chunk.image_urls),
|
| 359 |
+
**chunk.metadata
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
self.qdrant_service.index_data(
|
| 363 |
+
doc_id=chunk_id,
|
| 364 |
+
embedding=embedding,
|
| 365 |
+
metadata=metadata
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
chunk_ids.append(chunk_id)
|
| 369 |
+
indexed_count += 1
|
| 370 |
+
total_images += len(chunk.image_urls)
|
| 371 |
+
|
| 372 |
+
doc_info = {
|
| 373 |
+
'document_id': document_id,
|
| 374 |
+
'type': 'multimodal_pdf',
|
| 375 |
+
'filename': filename,
|
| 376 |
+
'num_chunks': indexed_count,
|
| 377 |
+
'total_images': total_images,
|
| 378 |
+
'chunk_ids': chunk_ids,
|
| 379 |
+
'metadata': metadata
|
| 380 |
+
}
|
| 381 |
+
self.documents_collection.insert_one(doc_info)
|
| 382 |
+
|
| 383 |
+
return {
|
| 384 |
+
'success': True,
|
| 385 |
+
'document_id': document_id,
|
| 386 |
+
'filename': filename,
|
| 387 |
+
'chunks_indexed': indexed_count,
|
| 388 |
+
'images_found': total_images,
|
| 389 |
+
'chunk_ids': chunk_ids[:5]
|
| 390 |
+
}
|
pdf_parser.py
ADDED
|
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PDF Parser Service for RAG Chatbot
|
| 3 |
+
Extracts text from PDF and splits into chunks for indexing
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pypdfium2 as pdfium
|
| 7 |
+
from typing import List, Dict, Optional
|
| 8 |
+
import re
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class PDFChunk:
|
| 14 |
+
"""Represents a chunk of text from PDF"""
|
| 15 |
+
text: str
|
| 16 |
+
page_number: int
|
| 17 |
+
chunk_index: int
|
| 18 |
+
metadata: Dict
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class PDFParser:
|
| 22 |
+
"""Parse PDF files and prepare for RAG indexing"""
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
chunk_size: int = 500, # words per chunk
|
| 27 |
+
chunk_overlap: int = 50, # words overlap between chunks
|
| 28 |
+
min_chunk_size: int = 50 # minimum words in a chunk
|
| 29 |
+
):
|
| 30 |
+
self.chunk_size = chunk_size
|
| 31 |
+
self.chunk_overlap = chunk_overlap
|
| 32 |
+
self.min_chunk_size = min_chunk_size
|
| 33 |
+
|
| 34 |
+
def extract_text_from_pdf(self, pdf_path: str) -> Dict[int, str]:
|
| 35 |
+
"""
|
| 36 |
+
Extract text from PDF file
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
pdf_path: Path to PDF file
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
Dictionary mapping page number to text content
|
| 43 |
+
"""
|
| 44 |
+
pdf_text = {}
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
pdf = pdfium.PdfDocument(pdf_path)
|
| 48 |
+
|
| 49 |
+
for page_num in range(len(pdf)):
|
| 50 |
+
page = pdf[page_num]
|
| 51 |
+
textpage = page.get_textpage()
|
| 52 |
+
text = textpage.get_text_range()
|
| 53 |
+
|
| 54 |
+
# Clean text
|
| 55 |
+
text = self._clean_text(text)
|
| 56 |
+
pdf_text[page_num + 1] = text # 1-indexed pages
|
| 57 |
+
|
| 58 |
+
return pdf_text
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
raise Exception(f"Error reading PDF: {str(e)}")
|
| 62 |
+
|
| 63 |
+
def _clean_text(self, text: str) -> str:
|
| 64 |
+
"""Clean extracted text"""
|
| 65 |
+
# Remove excessive whitespace
|
| 66 |
+
text = re.sub(r'\s+', ' ', text)
|
| 67 |
+
|
| 68 |
+
# Remove special characters that might cause issues
|
| 69 |
+
text = text.replace('\x00', '')
|
| 70 |
+
|
| 71 |
+
return text.strip()
|
| 72 |
+
|
| 73 |
+
def chunk_text(self, text: str, page_number: int) -> List[PDFChunk]:
|
| 74 |
+
"""
|
| 75 |
+
Split text into overlapping chunks
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
text: Text to chunk
|
| 79 |
+
page_number: Page number this text came from
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
List of PDFChunk objects
|
| 83 |
+
"""
|
| 84 |
+
# Split into words
|
| 85 |
+
words = text.split()
|
| 86 |
+
|
| 87 |
+
if len(words) < self.min_chunk_size:
|
| 88 |
+
# Text too short, return as single chunk
|
| 89 |
+
if len(words) > 0:
|
| 90 |
+
return [PDFChunk(
|
| 91 |
+
text=text,
|
| 92 |
+
page_number=page_number,
|
| 93 |
+
chunk_index=0,
|
| 94 |
+
metadata={'page': page_number, 'chunk': 0}
|
| 95 |
+
)]
|
| 96 |
+
return []
|
| 97 |
+
|
| 98 |
+
chunks = []
|
| 99 |
+
chunk_index = 0
|
| 100 |
+
start = 0
|
| 101 |
+
|
| 102 |
+
while start < len(words):
|
| 103 |
+
# Get chunk
|
| 104 |
+
end = min(start + self.chunk_size, len(words))
|
| 105 |
+
chunk_words = words[start:end]
|
| 106 |
+
chunk_text = ' '.join(chunk_words)
|
| 107 |
+
|
| 108 |
+
chunks.append(PDFChunk(
|
| 109 |
+
text=chunk_text,
|
| 110 |
+
page_number=page_number,
|
| 111 |
+
chunk_index=chunk_index,
|
| 112 |
+
metadata={
|
| 113 |
+
'page': page_number,
|
| 114 |
+
'chunk': chunk_index,
|
| 115 |
+
'start_word': start,
|
| 116 |
+
'end_word': end
|
| 117 |
+
}
|
| 118 |
+
))
|
| 119 |
+
|
| 120 |
+
chunk_index += 1
|
| 121 |
+
|
| 122 |
+
# Move start position with overlap
|
| 123 |
+
start = end - self.chunk_overlap
|
| 124 |
+
|
| 125 |
+
# Avoid infinite loop
|
| 126 |
+
if start >= len(words) - self.min_chunk_size:
|
| 127 |
+
break
|
| 128 |
+
|
| 129 |
+
return chunks
|
| 130 |
+
|
| 131 |
+
def parse_pdf(
|
| 132 |
+
self,
|
| 133 |
+
pdf_path: str,
|
| 134 |
+
document_metadata: Optional[Dict] = None
|
| 135 |
+
) -> List[PDFChunk]:
|
| 136 |
+
"""
|
| 137 |
+
Parse entire PDF into chunks
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
pdf_path: Path to PDF file
|
| 141 |
+
document_metadata: Additional metadata for the document
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
List of all chunks from the PDF
|
| 145 |
+
"""
|
| 146 |
+
# Extract text from all pages
|
| 147 |
+
pages_text = self.extract_text_from_pdf(pdf_path)
|
| 148 |
+
|
| 149 |
+
# Chunk each page
|
| 150 |
+
all_chunks = []
|
| 151 |
+
for page_num, text in pages_text.items():
|
| 152 |
+
chunks = self.chunk_text(text, page_num)
|
| 153 |
+
|
| 154 |
+
# Add document metadata
|
| 155 |
+
if document_metadata:
|
| 156 |
+
for chunk in chunks:
|
| 157 |
+
chunk.metadata.update(document_metadata)
|
| 158 |
+
|
| 159 |
+
all_chunks.extend(chunks)
|
| 160 |
+
|
| 161 |
+
return all_chunks
|
| 162 |
+
|
| 163 |
+
def parse_pdf_bytes(
|
| 164 |
+
self,
|
| 165 |
+
pdf_bytes: bytes,
|
| 166 |
+
document_metadata: Optional[Dict] = None
|
| 167 |
+
) -> List[PDFChunk]:
|
| 168 |
+
"""
|
| 169 |
+
Parse PDF from bytes (for uploaded files)
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
pdf_bytes: PDF file as bytes
|
| 173 |
+
document_metadata: Additional metadata
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
List of chunks
|
| 177 |
+
"""
|
| 178 |
+
import tempfile
|
| 179 |
+
import os
|
| 180 |
+
|
| 181 |
+
# Save to temp file
|
| 182 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 183 |
+
tmp.write(pdf_bytes)
|
| 184 |
+
tmp_path = tmp.name
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
chunks = self.parse_pdf(tmp_path, document_metadata)
|
| 188 |
+
return chunks
|
| 189 |
+
finally:
|
| 190 |
+
# Clean up temp file
|
| 191 |
+
if os.path.exists(tmp_path):
|
| 192 |
+
os.unlink(tmp_path)
|
| 193 |
+
|
| 194 |
+
def get_pdf_info(self, pdf_path: str) -> Dict:
|
| 195 |
+
"""
|
| 196 |
+
Get basic info about PDF
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
pdf_path: Path to PDF file
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Dictionary with PDF information
|
| 203 |
+
"""
|
| 204 |
+
try:
|
| 205 |
+
pdf = pdfium.PdfDocument(pdf_path)
|
| 206 |
+
|
| 207 |
+
info = {
|
| 208 |
+
'num_pages': len(pdf),
|
| 209 |
+
'file_path': pdf_path,
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
return info
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
raise Exception(f"Error reading PDF info: {str(e)}")
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class PDFIndexer:
|
| 219 |
+
"""Index PDF chunks into RAG system"""
|
| 220 |
+
|
| 221 |
+
def __init__(self, embedding_service, qdrant_service, documents_collection):
|
| 222 |
+
self.embedding_service = embedding_service
|
| 223 |
+
self.qdrant_service = qdrant_service
|
| 224 |
+
self.documents_collection = documents_collection
|
| 225 |
+
self.parser = PDFParser()
|
| 226 |
+
|
| 227 |
+
def index_pdf(
|
| 228 |
+
self,
|
| 229 |
+
pdf_path: str,
|
| 230 |
+
document_id: str,
|
| 231 |
+
document_metadata: Optional[Dict] = None
|
| 232 |
+
) -> Dict:
|
| 233 |
+
"""
|
| 234 |
+
Index entire PDF into RAG system
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
pdf_path: Path to PDF file
|
| 238 |
+
document_id: Unique ID for this document
|
| 239 |
+
document_metadata: Additional metadata (title, author, etc.)
|
| 240 |
+
|
| 241 |
+
Returns:
|
| 242 |
+
Indexing results
|
| 243 |
+
"""
|
| 244 |
+
# Parse PDF
|
| 245 |
+
chunks = self.parser.parse_pdf(pdf_path, document_metadata)
|
| 246 |
+
|
| 247 |
+
# Index each chunk
|
| 248 |
+
indexed_count = 0
|
| 249 |
+
chunk_ids = []
|
| 250 |
+
|
| 251 |
+
for chunk in chunks:
|
| 252 |
+
# Generate unique ID for chunk
|
| 253 |
+
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
|
| 254 |
+
|
| 255 |
+
# Generate embedding
|
| 256 |
+
embedding = self.embedding_service.encode_text(chunk.text)
|
| 257 |
+
|
| 258 |
+
# Prepare metadata
|
| 259 |
+
metadata = {
|
| 260 |
+
'text': chunk.text,
|
| 261 |
+
'document_id': document_id,
|
| 262 |
+
'page': chunk.page_number,
|
| 263 |
+
'chunk_index': chunk.chunk_index,
|
| 264 |
+
'source': 'pdf',
|
| 265 |
+
**chunk.metadata
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
# Index to Qdrant
|
| 269 |
+
self.qdrant_service.index_data(
|
| 270 |
+
doc_id=chunk_id,
|
| 271 |
+
embedding=embedding,
|
| 272 |
+
metadata=metadata
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
chunk_ids.append(chunk_id)
|
| 276 |
+
indexed_count += 1
|
| 277 |
+
|
| 278 |
+
# Save document info to MongoDB
|
| 279 |
+
doc_info = {
|
| 280 |
+
'document_id': document_id,
|
| 281 |
+
'type': 'pdf',
|
| 282 |
+
'file_path': pdf_path,
|
| 283 |
+
'num_chunks': indexed_count,
|
| 284 |
+
'chunk_ids': chunk_ids,
|
| 285 |
+
'metadata': document_metadata or {},
|
| 286 |
+
'pdf_info': self.parser.get_pdf_info(pdf_path)
|
| 287 |
+
}
|
| 288 |
+
self.documents_collection.insert_one(doc_info)
|
| 289 |
+
|
| 290 |
+
return {
|
| 291 |
+
'success': True,
|
| 292 |
+
'document_id': document_id,
|
| 293 |
+
'chunks_indexed': indexed_count,
|
| 294 |
+
'chunk_ids': chunk_ids[:5] # Return first 5 as sample
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
def index_pdf_bytes(
|
| 298 |
+
self,
|
| 299 |
+
pdf_bytes: bytes,
|
| 300 |
+
document_id: str,
|
| 301 |
+
filename: str,
|
| 302 |
+
document_metadata: Optional[Dict] = None
|
| 303 |
+
) -> Dict:
|
| 304 |
+
"""
|
| 305 |
+
Index PDF from bytes (for uploaded files)
|
| 306 |
+
|
| 307 |
+
Args:
|
| 308 |
+
pdf_bytes: PDF file as bytes
|
| 309 |
+
document_id: Unique ID for this document
|
| 310 |
+
filename: Original filename
|
| 311 |
+
document_metadata: Additional metadata
|
| 312 |
+
|
| 313 |
+
Returns:
|
| 314 |
+
Indexing results
|
| 315 |
+
"""
|
| 316 |
+
# Parse PDF
|
| 317 |
+
metadata = document_metadata or {}
|
| 318 |
+
metadata['filename'] = filename
|
| 319 |
+
|
| 320 |
+
chunks = self.parser.parse_pdf_bytes(pdf_bytes, metadata)
|
| 321 |
+
|
| 322 |
+
# Index each chunk
|
| 323 |
+
indexed_count = 0
|
| 324 |
+
chunk_ids = []
|
| 325 |
+
|
| 326 |
+
for chunk in chunks:
|
| 327 |
+
# Generate unique ID for chunk
|
| 328 |
+
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
|
| 329 |
+
|
| 330 |
+
# Generate embedding
|
| 331 |
+
embedding = self.embedding_service.encode_text(chunk.text)
|
| 332 |
+
|
| 333 |
+
# Prepare metadata
|
| 334 |
+
metadata = {
|
| 335 |
+
'text': chunk.text,
|
| 336 |
+
'document_id': document_id,
|
| 337 |
+
'page': chunk.page_number,
|
| 338 |
+
'chunk_index': chunk.chunk_index,
|
| 339 |
+
'source': 'pdf',
|
| 340 |
+
'filename': filename,
|
| 341 |
+
**chunk.metadata
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
# Index to Qdrant
|
| 345 |
+
self.qdrant_service.index_data(
|
| 346 |
+
doc_id=chunk_id,
|
| 347 |
+
embedding=embedding,
|
| 348 |
+
metadata=metadata
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
chunk_ids.append(chunk_id)
|
| 352 |
+
indexed_count += 1
|
| 353 |
+
|
| 354 |
+
# Save document info to MongoDB
|
| 355 |
+
doc_info = {
|
| 356 |
+
'document_id': document_id,
|
| 357 |
+
'type': 'pdf',
|
| 358 |
+
'filename': filename,
|
| 359 |
+
'num_chunks': indexed_count,
|
| 360 |
+
'chunk_ids': chunk_ids,
|
| 361 |
+
'metadata': metadata
|
| 362 |
+
}
|
| 363 |
+
self.documents_collection.insert_one(doc_info)
|
| 364 |
+
|
| 365 |
+
return {
|
| 366 |
+
'success': True,
|
| 367 |
+
'document_id': document_id,
|
| 368 |
+
'filename': filename,
|
| 369 |
+
'chunks_indexed': indexed_count,
|
| 370 |
+
'chunk_ids': chunk_ids[:5]
|
| 371 |
+
}
|
qdrant_service.py
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from qdrant_client import QdrantClient
|
| 2 |
+
from qdrant_client.models import (
|
| 3 |
+
Distance, VectorParams, PointStruct,
|
| 4 |
+
SearchRequest, SearchParams, HnswConfigDiff,
|
| 5 |
+
OptimizersConfigDiff, ScalarQuantization,
|
| 6 |
+
ScalarQuantizationConfig, ScalarType,
|
| 7 |
+
QuantizationSearchParams
|
| 8 |
+
)
|
| 9 |
+
from typing import List, Dict, Any, Optional
|
| 10 |
+
import numpy as np
|
| 11 |
+
import uuid
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class QdrantVectorService:
|
| 16 |
+
"""
|
| 17 |
+
Qdrant Cloud Vector Database Service với cấu hình tối ưu
|
| 18 |
+
- HNSW algorithm với parameters mạnh mẽ nhất
|
| 19 |
+
- Scalar Quantization để tối ưu memory và speed
|
| 20 |
+
- Hỗ trợ hybrid search (text + image)
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
url: Optional[str] = None,
|
| 26 |
+
api_key: Optional[str] = None,
|
| 27 |
+
collection_name: str = "event_social_media",
|
| 28 |
+
vector_size: int = 1024, # Jina CLIP v2 dimension
|
| 29 |
+
):
|
| 30 |
+
"""
|
| 31 |
+
Initialize Qdrant Cloud client
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
url: Qdrant Cloud URL (từ env hoặc truyền vào)
|
| 35 |
+
api_key: Qdrant API key (từ env hoặc truyền vào)
|
| 36 |
+
collection_name: Tên collection
|
| 37 |
+
vector_size: Dimension của vectors (1024 cho Jina CLIP v2)
|
| 38 |
+
"""
|
| 39 |
+
# Lấy credentials từ env nếu không truyền vào
|
| 40 |
+
self.url = url or os.getenv("QDRANT_URL")
|
| 41 |
+
self.api_key = api_key or os.getenv("QDRANT_API_KEY")
|
| 42 |
+
|
| 43 |
+
if not self.url or not self.api_key:
|
| 44 |
+
raise ValueError("Cần cung cấp QDRANT_URL và QDRANT_API_KEY (qua env hoặc params)")
|
| 45 |
+
|
| 46 |
+
print(f"Connecting to Qdrant Cloud...")
|
| 47 |
+
|
| 48 |
+
# Initialize Qdrant Cloud client
|
| 49 |
+
self.client = QdrantClient(
|
| 50 |
+
url=self.url,
|
| 51 |
+
api_key=self.api_key,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
self.collection_name = collection_name
|
| 55 |
+
self.vector_size = vector_size
|
| 56 |
+
|
| 57 |
+
# Create collection nếu chưa tồn tại
|
| 58 |
+
self._ensure_collection()
|
| 59 |
+
|
| 60 |
+
print(f"✓ Connected to Qdrant collection: {collection_name}")
|
| 61 |
+
|
| 62 |
+
def _ensure_collection(self):
|
| 63 |
+
"""
|
| 64 |
+
Tạo collection với HNSW config tối ưu nhất
|
| 65 |
+
"""
|
| 66 |
+
# Check nếu collection đã tồn tại
|
| 67 |
+
collections = self.client.get_collections().collections
|
| 68 |
+
collection_exists = any(c.name == self.collection_name for c in collections)
|
| 69 |
+
|
| 70 |
+
if not collection_exists:
|
| 71 |
+
print(f"Creating collection {self.collection_name} with optimal HNSW config...")
|
| 72 |
+
|
| 73 |
+
self.client.create_collection(
|
| 74 |
+
collection_name=self.collection_name,
|
| 75 |
+
vectors_config=VectorParams(
|
| 76 |
+
size=self.vector_size,
|
| 77 |
+
distance=Distance.COSINE, # Cosine similarity cho embeddings
|
| 78 |
+
hnsw_config=HnswConfigDiff(
|
| 79 |
+
m=64, # Số edges per node - cao nhất cho accuracy
|
| 80 |
+
ef_construct=512, # Search range khi build index - cao cho quality
|
| 81 |
+
full_scan_threshold=10000, # Threshold để switch sang full scan
|
| 82 |
+
max_indexing_threads=0, # Auto-detect số threads
|
| 83 |
+
on_disk=False, # Keep trong RAM cho speed (nếu đủ memory)
|
| 84 |
+
)
|
| 85 |
+
),
|
| 86 |
+
optimizers_config=OptimizersConfigDiff(
|
| 87 |
+
deleted_threshold=0.2,
|
| 88 |
+
vacuum_min_vector_number=1000,
|
| 89 |
+
default_segment_number=2,
|
| 90 |
+
max_segment_size=200000,
|
| 91 |
+
memmap_threshold=50000,
|
| 92 |
+
indexing_threshold=10000,
|
| 93 |
+
flush_interval_sec=5,
|
| 94 |
+
max_optimization_threads=0, # Auto-detect
|
| 95 |
+
),
|
| 96 |
+
# Sử dụng Scalar Quantization để tối ưu memory và speed
|
| 97 |
+
quantization_config=ScalarQuantization(
|
| 98 |
+
scalar=ScalarQuantizationConfig(
|
| 99 |
+
type=ScalarType.INT8,
|
| 100 |
+
quantile=0.99,
|
| 101 |
+
always_ram=True, # Keep quantized vectors trong RAM
|
| 102 |
+
)
|
| 103 |
+
)
|
| 104 |
+
)
|
| 105 |
+
print("✓ Collection created with optimal configuration")
|
| 106 |
+
else:
|
| 107 |
+
print("✓ Collection already exists")
|
| 108 |
+
|
| 109 |
+
def _convert_to_valid_id(self, doc_id: str) -> str:
|
| 110 |
+
"""
|
| 111 |
+
Convert bất kỳ string ID nào thành UUID hợp lệ cho Qdrant
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
doc_id: Original ID (có thể là MongoDB ObjectId, string, etc.)
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
UUID string hợp lệ
|
| 118 |
+
"""
|
| 119 |
+
if not doc_id:
|
| 120 |
+
return str(uuid.uuid4())
|
| 121 |
+
|
| 122 |
+
# Nếu đã là UUID hợp lệ, giữ nguyên
|
| 123 |
+
try:
|
| 124 |
+
uuid.UUID(doc_id)
|
| 125 |
+
return doc_id
|
| 126 |
+
except ValueError:
|
| 127 |
+
pass
|
| 128 |
+
|
| 129 |
+
# Convert string sang UUID deterministic (cùng input = cùng UUID)
|
| 130 |
+
# Sử dụng UUID v5 với namespace DNS
|
| 131 |
+
return str(uuid.uuid5(uuid.NAMESPACE_DNS, doc_id))
|
| 132 |
+
|
| 133 |
+
def index_data(
|
| 134 |
+
self,
|
| 135 |
+
doc_id: str,
|
| 136 |
+
embedding: np.ndarray,
|
| 137 |
+
metadata: Dict[str, Any]
|
| 138 |
+
) -> Dict[str, str]:
|
| 139 |
+
"""
|
| 140 |
+
Index data vào Qdrant
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
doc_id: ID của document (MongoDB ObjectId, string, etc.)
|
| 144 |
+
embedding: Vector embedding từ Jina CLIP
|
| 145 |
+
metadata: Metadata (text, image_url, event_info, etc.)
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
Dict với original_id và qdrant_id
|
| 149 |
+
"""
|
| 150 |
+
# Convert ID thành UUID hợp lệ
|
| 151 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 152 |
+
|
| 153 |
+
# Lưu original ID vào metadata
|
| 154 |
+
metadata['original_id'] = doc_id
|
| 155 |
+
|
| 156 |
+
# Ensure embedding là 1D array
|
| 157 |
+
if len(embedding.shape) > 1:
|
| 158 |
+
embedding = embedding.flatten()
|
| 159 |
+
|
| 160 |
+
# Create point
|
| 161 |
+
point = PointStruct(
|
| 162 |
+
id=qdrant_id,
|
| 163 |
+
vector=embedding.tolist(),
|
| 164 |
+
payload=metadata
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Upsert vào collection
|
| 168 |
+
self.client.upsert(
|
| 169 |
+
collection_name=self.collection_name,
|
| 170 |
+
points=[point]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
return {
|
| 174 |
+
"original_id": doc_id,
|
| 175 |
+
"qdrant_id": qdrant_id
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
def batch_index(
|
| 179 |
+
self,
|
| 180 |
+
doc_ids: List[str],
|
| 181 |
+
embeddings: np.ndarray,
|
| 182 |
+
metadata_list: List[Dict[str, Any]]
|
| 183 |
+
) -> List[Dict[str, str]]:
|
| 184 |
+
"""
|
| 185 |
+
Batch index nhiều documents cùng lúc
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
doc_ids: List of document IDs (MongoDB ObjectId, string, etc.)
|
| 189 |
+
embeddings: Numpy array of embeddings (n_samples, embedding_dim)
|
| 190 |
+
metadata_list: List of metadata dicts
|
| 191 |
+
|
| 192 |
+
Returns:
|
| 193 |
+
List of dicts với original_id và qdrant_id
|
| 194 |
+
"""
|
| 195 |
+
points = []
|
| 196 |
+
id_mappings = []
|
| 197 |
+
|
| 198 |
+
for i, (doc_id, embedding, metadata) in enumerate(zip(doc_ids, embeddings, metadata_list)):
|
| 199 |
+
# Convert to valid UUID
|
| 200 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 201 |
+
|
| 202 |
+
# Lưu original ID vào metadata
|
| 203 |
+
metadata['original_id'] = doc_id
|
| 204 |
+
|
| 205 |
+
# Ensure embedding là 1D
|
| 206 |
+
if len(embedding.shape) > 1:
|
| 207 |
+
embedding = embedding.flatten()
|
| 208 |
+
|
| 209 |
+
points.append(PointStruct(
|
| 210 |
+
id=qdrant_id,
|
| 211 |
+
vector=embedding.tolist(),
|
| 212 |
+
payload=metadata
|
| 213 |
+
))
|
| 214 |
+
|
| 215 |
+
id_mappings.append({
|
| 216 |
+
"original_id": doc_id,
|
| 217 |
+
"qdrant_id": qdrant_id
|
| 218 |
+
})
|
| 219 |
+
|
| 220 |
+
# Batch upsert
|
| 221 |
+
self.client.upsert(
|
| 222 |
+
collection_name=self.collection_name,
|
| 223 |
+
points=points,
|
| 224 |
+
wait=True # Wait for indexing to complete
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
return id_mappings
|
| 228 |
+
|
| 229 |
+
def search(
|
| 230 |
+
self,
|
| 231 |
+
query_embedding: np.ndarray,
|
| 232 |
+
limit: int = 10,
|
| 233 |
+
score_threshold: Optional[float] = None,
|
| 234 |
+
filter_conditions: Optional[Dict] = None,
|
| 235 |
+
ef: int = 256 # Search quality parameter - cao hơn = accurate hơn
|
| 236 |
+
) -> List[Dict[str, Any]]:
|
| 237 |
+
"""
|
| 238 |
+
Search similar vectors trong Qdrant
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
query_embedding: Query embedding từ Jina CLIP
|
| 242 |
+
limit: Số lượng results trả về
|
| 243 |
+
score_threshold: Minimum similarity score (0-1)
|
| 244 |
+
filter_conditions: Qdrant filter conditions
|
| 245 |
+
ef: HNSW search parameter (128-512, cao hơn = accurate hơn)
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
List of search results với id, score, và metadata
|
| 249 |
+
"""
|
| 250 |
+
# Ensure query embedding là 1D
|
| 251 |
+
if len(query_embedding.shape) > 1:
|
| 252 |
+
query_embedding = query_embedding.flatten()
|
| 253 |
+
|
| 254 |
+
# Search với HNSW parameters tối ưu
|
| 255 |
+
search_result = self.client.search(
|
| 256 |
+
collection_name=self.collection_name,
|
| 257 |
+
query_vector=query_embedding.tolist(),
|
| 258 |
+
limit=limit,
|
| 259 |
+
score_threshold=score_threshold,
|
| 260 |
+
query_filter=filter_conditions,
|
| 261 |
+
search_params=SearchParams(
|
| 262 |
+
hnsw_ef=ef, # Higher ef = more accurate search
|
| 263 |
+
exact=False, # Use HNSW (not exact search)
|
| 264 |
+
quantization=QuantizationSearchParams(
|
| 265 |
+
ignore=False, # Use quantization
|
| 266 |
+
rescore=True, # Rescore với original vectors
|
| 267 |
+
oversampling=2.0 # Oversample factor
|
| 268 |
+
)
|
| 269 |
+
),
|
| 270 |
+
with_payload=True,
|
| 271 |
+
with_vectors=False # Không cần return vectors
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Format results - trả về original_id thay vì UUID
|
| 275 |
+
results = []
|
| 276 |
+
for hit in search_result:
|
| 277 |
+
# Lấy original_id từ metadata (MongoDB ObjectId)
|
| 278 |
+
original_id = hit.payload.get('original_id', hit.id)
|
| 279 |
+
|
| 280 |
+
results.append({
|
| 281 |
+
"id": original_id, # Trả về MongoDB ObjectId
|
| 282 |
+
"qdrant_id": hit.id, # UUID trong Qdrant
|
| 283 |
+
"confidence": float(hit.score), # Cosine similarity score
|
| 284 |
+
"metadata": hit.payload
|
| 285 |
+
})
|
| 286 |
+
|
| 287 |
+
return results
|
| 288 |
+
|
| 289 |
+
def hybrid_search(
|
| 290 |
+
self,
|
| 291 |
+
text_embedding: Optional[np.ndarray] = None,
|
| 292 |
+
image_embedding: Optional[np.ndarray] = None,
|
| 293 |
+
text_weight: float = 0.5,
|
| 294 |
+
image_weight: float = 0.5,
|
| 295 |
+
limit: int = 10,
|
| 296 |
+
score_threshold: Optional[float] = None,
|
| 297 |
+
ef: int = 256
|
| 298 |
+
) -> List[Dict[str, Any]]:
|
| 299 |
+
"""
|
| 300 |
+
Hybrid search với cả text và image embeddings
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
text_embedding: Text query embedding
|
| 304 |
+
image_embedding: Image query embedding
|
| 305 |
+
text_weight: Weight cho text search (0-1)
|
| 306 |
+
image_weight: Weight cho image search (0-1)
|
| 307 |
+
limit: Số results
|
| 308 |
+
score_threshold: Minimum score
|
| 309 |
+
ef: HNSW search parameter
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
Combined search results
|
| 313 |
+
"""
|
| 314 |
+
# Combine embeddings với weights
|
| 315 |
+
combined_embedding = np.zeros(self.vector_size)
|
| 316 |
+
|
| 317 |
+
if text_embedding is not None:
|
| 318 |
+
if len(text_embedding.shape) > 1:
|
| 319 |
+
text_embedding = text_embedding.flatten()
|
| 320 |
+
combined_embedding += text_weight * text_embedding
|
| 321 |
+
|
| 322 |
+
if image_embedding is not None:
|
| 323 |
+
if len(image_embedding.shape) > 1:
|
| 324 |
+
image_embedding = image_embedding.flatten()
|
| 325 |
+
combined_embedding += image_weight * image_embedding
|
| 326 |
+
|
| 327 |
+
# Normalize combined embedding
|
| 328 |
+
norm = np.linalg.norm(combined_embedding)
|
| 329 |
+
if norm > 0:
|
| 330 |
+
combined_embedding = combined_embedding / norm
|
| 331 |
+
|
| 332 |
+
# Search với combined embedding
|
| 333 |
+
return self.search(
|
| 334 |
+
query_embedding=combined_embedding,
|
| 335 |
+
limit=limit,
|
| 336 |
+
score_threshold=score_threshold,
|
| 337 |
+
ef=ef
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
def delete_by_id(self, doc_id: str) -> bool:
|
| 341 |
+
"""
|
| 342 |
+
Delete document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
|
| 343 |
+
|
| 344 |
+
Args:
|
| 345 |
+
doc_id: Document ID to delete (MongoDB ObjectId hoặc UUID)
|
| 346 |
+
|
| 347 |
+
Returns:
|
| 348 |
+
Success status
|
| 349 |
+
"""
|
| 350 |
+
# Convert to UUID nếu là MongoDB ObjectId
|
| 351 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 352 |
+
|
| 353 |
+
self.client.delete(
|
| 354 |
+
collection_name=self.collection_name,
|
| 355 |
+
points_selector=[qdrant_id]
|
| 356 |
+
)
|
| 357 |
+
return True
|
| 358 |
+
|
| 359 |
+
def get_by_id(self, doc_id: str) -> Optional[Dict[str, Any]]:
|
| 360 |
+
"""
|
| 361 |
+
Get document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
|
| 362 |
+
|
| 363 |
+
Args:
|
| 364 |
+
doc_id: Document ID (MongoDB ObjectId hoặc UUID)
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
Document data hoặc None nếu không tìm thấy
|
| 368 |
+
"""
|
| 369 |
+
# Convert to UUID nếu là MongoDB ObjectId
|
| 370 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 371 |
+
|
| 372 |
+
try:
|
| 373 |
+
result = self.client.retrieve(
|
| 374 |
+
collection_name=self.collection_name,
|
| 375 |
+
ids=[qdrant_id],
|
| 376 |
+
with_payload=True,
|
| 377 |
+
with_vectors=False
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if result:
|
| 381 |
+
point = result[0]
|
| 382 |
+
original_id = point.payload.get('original_id', point.id)
|
| 383 |
+
return {
|
| 384 |
+
"id": original_id, # MongoDB ObjectId
|
| 385 |
+
"qdrant_id": point.id, # UUID trong Qdrant
|
| 386 |
+
"metadata": point.payload
|
| 387 |
+
}
|
| 388 |
+
return None
|
| 389 |
+
except Exception as e:
|
| 390 |
+
print(f"Error retrieving document: {e}")
|
| 391 |
+
return None
|
| 392 |
+
|
| 393 |
+
def search_by_metadata(
|
| 394 |
+
self,
|
| 395 |
+
filter_conditions: Dict,
|
| 396 |
+
limit: int = 100
|
| 397 |
+
) -> List[Dict[str, Any]]:
|
| 398 |
+
"""
|
| 399 |
+
Search documents by metadata conditions (không cần embedding)
|
| 400 |
+
|
| 401 |
+
Args:
|
| 402 |
+
filter_conditions: Qdrant filter conditions
|
| 403 |
+
limit: Maximum số results
|
| 404 |
+
|
| 405 |
+
Returns:
|
| 406 |
+
List of matching documents
|
| 407 |
+
"""
|
| 408 |
+
try:
|
| 409 |
+
result = self.client.scroll(
|
| 410 |
+
collection_name=self.collection_name,
|
| 411 |
+
scroll_filter=filter_conditions,
|
| 412 |
+
limit=limit,
|
| 413 |
+
with_payload=True,
|
| 414 |
+
with_vectors=False
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
documents = []
|
| 418 |
+
for point in result[0]: # result is tuple (points, next_page_offset)
|
| 419 |
+
original_id = point.payload.get('original_id', point.id)
|
| 420 |
+
documents.append({
|
| 421 |
+
"id": original_id, # MongoDB ObjectId
|
| 422 |
+
"qdrant_id": point.id, # UUID trong Qdrant
|
| 423 |
+
"metadata": point.payload
|
| 424 |
+
})
|
| 425 |
+
|
| 426 |
+
return documents
|
| 427 |
+
except Exception as e:
|
| 428 |
+
print(f"Error searching by metadata: {e}")
|
| 429 |
+
return []
|
| 430 |
+
|
| 431 |
+
def get_collection_info(self) -> Dict[str, Any]:
|
| 432 |
+
"""
|
| 433 |
+
Lấy thông tin collection
|
| 434 |
+
|
| 435 |
+
Returns:
|
| 436 |
+
Collection info
|
| 437 |
+
"""
|
| 438 |
+
info = self.client.get_collection(collection_name=self.collection_name)
|
| 439 |
+
return {
|
| 440 |
+
"vectors_count": info.vectors_count,
|
| 441 |
+
"points_count": info.points_count,
|
| 442 |
+
"status": info.status,
|
| 443 |
+
"config": {
|
| 444 |
+
"distance": info.config.params.vectors.distance,
|
| 445 |
+
"size": info.config.params.vectors.size,
|
| 446 |
+
}
|
| 447 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FastAPI và web framework
|
| 2 |
+
fastapi==0.115.5
|
| 3 |
+
uvicorn[standard]==0.32.1
|
| 4 |
+
python-multipart==0.0.20
|
| 5 |
+
|
| 6 |
+
# Gradio cho Hugging Face Spaces
|
| 7 |
+
gradio>=4.0.0
|
| 8 |
+
|
| 9 |
+
# Machine Learning & Embeddings
|
| 10 |
+
torch>=2.0.0
|
| 11 |
+
transformers>=4.50.0
|
| 12 |
+
onnxruntime==1.20.1
|
| 13 |
+
torchvision>=0.15.0
|
| 14 |
+
pillow>=10.0.0
|
| 15 |
+
numpy>=1.24.0
|
| 16 |
+
|
| 17 |
+
# Vector Database
|
| 18 |
+
qdrant-client>=1.12.1
|
| 19 |
+
grpcio>=1.60.0
|
| 20 |
+
|
| 21 |
+
# Utilities
|
| 22 |
+
pydantic>=2.0.0
|
| 23 |
+
python-dotenv==1.0.0
|
| 24 |
+
|
| 25 |
+
# MongoDB
|
| 26 |
+
pymongo>=4.6.0
|
| 27 |
+
huggingface-hub>=0.20.0
|
| 28 |
+
timm
|
| 29 |
+
einops
|
| 30 |
+
|
| 31 |
+
# PDF Processing
|
| 32 |
+
pypdfium2>=4.30.0
|
| 33 |
+
|
| 34 |
+
|
test_advanced_features.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test script for Advanced RAG features
|
| 3 |
+
Demonstrates new capabilities: multiple texts/images indexing and advanced RAG chat
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import requests
|
| 7 |
+
import json
|
| 8 |
+
from typing import List, Optional
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdvancedRAGTester:
|
| 12 |
+
"""Test client for Advanced RAG API"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, base_url: str = "http://localhost:8000"):
|
| 15 |
+
self.base_url = base_url
|
| 16 |
+
|
| 17 |
+
def test_multiple_index(self, doc_id: str, texts: List[str], image_paths: Optional[List[str]] = None):
|
| 18 |
+
"""
|
| 19 |
+
Test indexing with multiple texts and images
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
doc_id: Document ID
|
| 23 |
+
texts: List of texts (max 10)
|
| 24 |
+
image_paths: List of image file paths (max 10)
|
| 25 |
+
"""
|
| 26 |
+
print(f"\n{'='*60}")
|
| 27 |
+
print(f"TEST: Indexing document '{doc_id}' with multiple texts/images")
|
| 28 |
+
print(f"{'='*60}")
|
| 29 |
+
|
| 30 |
+
# Prepare form data
|
| 31 |
+
data = {'id': doc_id}
|
| 32 |
+
|
| 33 |
+
# Add texts
|
| 34 |
+
if texts:
|
| 35 |
+
if len(texts) > 10:
|
| 36 |
+
print("WARNING: Maximum 10 texts allowed. Taking first 10.")
|
| 37 |
+
texts = texts[:10]
|
| 38 |
+
data['texts'] = texts
|
| 39 |
+
print(f"✓ Texts: {len(texts)} items")
|
| 40 |
+
|
| 41 |
+
# Prepare files
|
| 42 |
+
files = []
|
| 43 |
+
if image_paths:
|
| 44 |
+
if len(image_paths) > 10:
|
| 45 |
+
print("WARNING: Maximum 10 images allowed. Taking first 10.")
|
| 46 |
+
image_paths = image_paths[:10]
|
| 47 |
+
|
| 48 |
+
for img_path in image_paths:
|
| 49 |
+
try:
|
| 50 |
+
files.append(('images', open(img_path, 'rb')))
|
| 51 |
+
except FileNotFoundError:
|
| 52 |
+
print(f"WARNING: Image not found: {img_path}")
|
| 53 |
+
|
| 54 |
+
print(f"✓ Images: {len(files)} files")
|
| 55 |
+
|
| 56 |
+
# Make request
|
| 57 |
+
try:
|
| 58 |
+
response = requests.post(f"{self.base_url}/index", data=data, files=files)
|
| 59 |
+
response.raise_for_status()
|
| 60 |
+
|
| 61 |
+
result = response.json()
|
| 62 |
+
print(f"\n✓ SUCCESS")
|
| 63 |
+
print(f" - Document ID: {result['id']}")
|
| 64 |
+
print(f" - Message: {result['message']}")
|
| 65 |
+
return result
|
| 66 |
+
|
| 67 |
+
except requests.exceptions.RequestException as e:
|
| 68 |
+
print(f"\n✗ ERROR: {e}")
|
| 69 |
+
if hasattr(e.response, 'text'):
|
| 70 |
+
print(f" Response: {e.response.text}")
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
finally:
|
| 74 |
+
# Close file handles
|
| 75 |
+
for _, file_obj in files:
|
| 76 |
+
file_obj.close()
|
| 77 |
+
|
| 78 |
+
def test_advanced_rag_chat(
|
| 79 |
+
self,
|
| 80 |
+
message: str,
|
| 81 |
+
hf_token: Optional[str] = None,
|
| 82 |
+
use_advanced_rag: bool = True,
|
| 83 |
+
use_reranking: bool = True,
|
| 84 |
+
use_compression: bool = True,
|
| 85 |
+
top_k: int = 3,
|
| 86 |
+
score_threshold: float = 0.5
|
| 87 |
+
):
|
| 88 |
+
"""
|
| 89 |
+
Test advanced RAG chat
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
message: User question
|
| 93 |
+
hf_token: Hugging Face token (optional)
|
| 94 |
+
use_advanced_rag: Use advanced RAG pipeline
|
| 95 |
+
use_reranking: Enable reranking
|
| 96 |
+
use_compression: Enable context compression
|
| 97 |
+
top_k: Number of documents to retrieve
|
| 98 |
+
score_threshold: Minimum relevance score
|
| 99 |
+
"""
|
| 100 |
+
print(f"\n{'='*60}")
|
| 101 |
+
print(f"TEST: Advanced RAG Chat")
|
| 102 |
+
print(f"{'='*60}")
|
| 103 |
+
print(f"Question: {message}")
|
| 104 |
+
print(f"Advanced RAG: {use_advanced_rag}")
|
| 105 |
+
print(f"Reranking: {use_reranking}")
|
| 106 |
+
print(f"Compression: {use_compression}")
|
| 107 |
+
|
| 108 |
+
payload = {
|
| 109 |
+
'message': message,
|
| 110 |
+
'use_rag': True,
|
| 111 |
+
'use_advanced_rag': use_advanced_rag,
|
| 112 |
+
'use_reranking': use_reranking,
|
| 113 |
+
'use_compression': use_compression,
|
| 114 |
+
'top_k': top_k,
|
| 115 |
+
'score_threshold': score_threshold,
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
if hf_token:
|
| 119 |
+
payload['hf_token'] = hf_token
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
response = requests.post(f"{self.base_url}/chat", json=payload)
|
| 123 |
+
response.raise_for_status()
|
| 124 |
+
|
| 125 |
+
result = response.json()
|
| 126 |
+
|
| 127 |
+
print(f"\n✓ SUCCESS")
|
| 128 |
+
print(f"\n--- Answer ---")
|
| 129 |
+
print(result['response'])
|
| 130 |
+
|
| 131 |
+
print(f"\n--- Retrieved Context ({len(result['context_used'])} documents) ---")
|
| 132 |
+
for i, ctx in enumerate(result['context_used'], 1):
|
| 133 |
+
print(f"{i}. [{ctx['id']}] Confidence: {ctx['confidence']:.2%}")
|
| 134 |
+
text_preview = ctx['metadata'].get('text', '')[:100]
|
| 135 |
+
print(f" Text: {text_preview}...")
|
| 136 |
+
|
| 137 |
+
if result.get('rag_stats'):
|
| 138 |
+
print(f"\n--- RAG Pipeline Statistics ---")
|
| 139 |
+
stats = result['rag_stats']
|
| 140 |
+
print(f" Original query: {stats.get('original_query')}")
|
| 141 |
+
print(f" Expanded queries: {stats.get('expanded_queries')}")
|
| 142 |
+
print(f" Initial results: {stats.get('initial_results')}")
|
| 143 |
+
print(f" After reranking: {stats.get('after_rerank')}")
|
| 144 |
+
print(f" After compression: {stats.get('after_compression')}")
|
| 145 |
+
|
| 146 |
+
return result
|
| 147 |
+
|
| 148 |
+
except requests.exceptions.RequestException as e:
|
| 149 |
+
print(f"\n✗ ERROR: {e}")
|
| 150 |
+
if hasattr(e.response, 'text'):
|
| 151 |
+
print(f" Response: {e.response.text}")
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
def compare_basic_vs_advanced_rag(self, message: str, hf_token: Optional[str] = None):
|
| 155 |
+
"""Compare basic RAG vs advanced RAG side by side"""
|
| 156 |
+
print(f"\n{'='*60}")
|
| 157 |
+
print(f"COMPARISON: Basic RAG vs Advanced RAG")
|
| 158 |
+
print(f"{'='*60}")
|
| 159 |
+
print(f"Question: {message}\n")
|
| 160 |
+
|
| 161 |
+
# Test Basic RAG
|
| 162 |
+
print("\n--- BASIC RAG ---")
|
| 163 |
+
basic_result = self.test_advanced_rag_chat(
|
| 164 |
+
message=message,
|
| 165 |
+
hf_token=hf_token,
|
| 166 |
+
use_advanced_rag=False
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Test Advanced RAG
|
| 170 |
+
print("\n--- ADVANCED RAG ---")
|
| 171 |
+
advanced_result = self.test_advanced_rag_chat(
|
| 172 |
+
message=message,
|
| 173 |
+
hf_token=hf_token,
|
| 174 |
+
use_advanced_rag=True
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Compare
|
| 178 |
+
print(f"\n{'='*60}")
|
| 179 |
+
print("COMPARISON SUMMARY")
|
| 180 |
+
print(f"{'='*60}")
|
| 181 |
+
|
| 182 |
+
if basic_result and advanced_result:
|
| 183 |
+
print(f"Basic RAG:")
|
| 184 |
+
print(f" - Retrieved docs: {len(basic_result['context_used'])}")
|
| 185 |
+
|
| 186 |
+
print(f"\nAdvanced RAG:")
|
| 187 |
+
print(f" - Retrieved docs: {len(advanced_result['context_used'])}")
|
| 188 |
+
if advanced_result.get('rag_stats'):
|
| 189 |
+
stats = advanced_result['rag_stats']
|
| 190 |
+
print(f" - Query expansion: {len(stats.get('expanded_queries', []))} variants")
|
| 191 |
+
print(f" - Initial retrieval: {stats.get('initial_results', 0)} docs")
|
| 192 |
+
print(f" - After reranking: {stats.get('after_rerank', 0)} docs")
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def main():
|
| 196 |
+
"""Run tests"""
|
| 197 |
+
tester = AdvancedRAGTester()
|
| 198 |
+
|
| 199 |
+
print("="*60)
|
| 200 |
+
print("ADVANCED RAG FEATURE TESTS")
|
| 201 |
+
print("="*60)
|
| 202 |
+
|
| 203 |
+
# Test 1: Index with multiple texts (no images for demo)
|
| 204 |
+
print("\n\n### TEST 1: Index Multiple Texts ###")
|
| 205 |
+
tester.test_multiple_index(
|
| 206 |
+
doc_id="event_music_festival_2025",
|
| 207 |
+
texts=[
|
| 208 |
+
"Festival âm nhạc quốc tế Hà Nội 2025",
|
| 209 |
+
"Thời gian: 15-17 tháng 11 năm 2025",
|
| 210 |
+
"Địa điểm: Công viên Thống Nhất, Hà Nội",
|
| 211 |
+
"Line-up: Sơn Tùng MTP, Đen Vâu, Hoàng Thùy Linh, Mỹ Tâm",
|
| 212 |
+
"Giá vé: Early bird 500.000đ, VIP 2.000.000đ",
|
| 213 |
+
"Dự kiến 50.000 khán giả tham dự",
|
| 214 |
+
"3 sân khấu chính, 5 food court, khu vực cắm trại"
|
| 215 |
+
]
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Test 2: Index another document
|
| 219 |
+
print("\n\n### TEST 2: Index Another Document ###")
|
| 220 |
+
tester.test_multiple_index(
|
| 221 |
+
doc_id="safety_guidelines",
|
| 222 |
+
texts=[
|
| 223 |
+
"Vũ khí và đồ vật nguy hiểm bị cấm mang vào sự kiện",
|
| 224 |
+
"Dao, kiếm, súng và các loại vũ khí nguy hiểm nghiêm cấm",
|
| 225 |
+
"An ninh sẽ kiểm tra tất cả túi xách và đồ mang theo",
|
| 226 |
+
"Vi phạm sẽ bị tịch thu và có thể bị trục xuất khỏi sự kiện"
|
| 227 |
+
]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Test 3: Basic chat (without HF token - will show placeholder)
|
| 231 |
+
print("\n\n### TEST 3: Basic RAG Chat (No LLM) ###")
|
| 232 |
+
tester.test_advanced_rag_chat(
|
| 233 |
+
message="Festival Hà Nội diễn ra khi nào?",
|
| 234 |
+
use_advanced_rag=False
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Test 4: Advanced RAG chat
|
| 238 |
+
print("\n\n### TEST 4: Advanced RAG Chat (No LLM) ###")
|
| 239 |
+
tester.test_advanced_rag_chat(
|
| 240 |
+
message="Festival Hà Nội diễn ra khi nào và có những nghệ sĩ nào?",
|
| 241 |
+
use_advanced_rag=True,
|
| 242 |
+
use_reranking=True,
|
| 243 |
+
use_compression=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Test 5: Compare basic vs advanced
|
| 247 |
+
print("\n\n### TEST 5: Comparison Test ###")
|
| 248 |
+
tester.compare_basic_vs_advanced_rag(
|
| 249 |
+
message="Dao có được mang vào sự kiện không?"
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
print("\n\n" + "="*60)
|
| 253 |
+
print("ALL TESTS COMPLETED")
|
| 254 |
+
print("="*60)
|
| 255 |
+
print("\nNOTE: To test with actual LLM responses, add your Hugging Face token:")
|
| 256 |
+
print(" tester.test_advanced_rag_chat(message='...', hf_token='hf_xxxxx')")
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
if __name__ == "__main__":
|
| 260 |
+
main()
|
verify_dependencies.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Verify all dependencies are installed correctly
|
| 3 |
+
Run: python verify_dependencies.py
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
def check_dependency(module_name, package_name=None):
|
| 9 |
+
"""Check if a dependency is installed"""
|
| 10 |
+
if package_name is None:
|
| 11 |
+
package_name = module_name
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
__import__(module_name)
|
| 15 |
+
print(f"✓ {package_name}")
|
| 16 |
+
return True
|
| 17 |
+
except ImportError as e:
|
| 18 |
+
print(f"✗ {package_name} - NOT INSTALLED")
|
| 19 |
+
print(f" Error: {e}")
|
| 20 |
+
return False
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def main():
|
| 24 |
+
print("="*60)
|
| 25 |
+
print("Dependency Verification")
|
| 26 |
+
print("="*60)
|
| 27 |
+
|
| 28 |
+
dependencies = [
|
| 29 |
+
# Web framework
|
| 30 |
+
("fastapi", "fastapi"),
|
| 31 |
+
("uvicorn", "uvicorn"),
|
| 32 |
+
("multipart", "python-multipart"),
|
| 33 |
+
|
| 34 |
+
# ML & Embeddings
|
| 35 |
+
("torch", "torch"),
|
| 36 |
+
("transformers", "transformers"),
|
| 37 |
+
("PIL", "pillow"),
|
| 38 |
+
("numpy", "numpy"),
|
| 39 |
+
|
| 40 |
+
# Vector DB
|
| 41 |
+
("qdrant_client", "qdrant-client"),
|
| 42 |
+
|
| 43 |
+
# Utilities
|
| 44 |
+
("pydantic", "pydantic"),
|
| 45 |
+
("dotenv", "python-dotenv"),
|
| 46 |
+
|
| 47 |
+
# MongoDB
|
| 48 |
+
("pymongo", "pymongo"),
|
| 49 |
+
("huggingface_hub", "huggingface-hub"),
|
| 50 |
+
("timm", "timm"),
|
| 51 |
+
("einops", "einops"),
|
| 52 |
+
|
| 53 |
+
# PDF Processing (NEW)
|
| 54 |
+
("pypdfium2", "pypdfium2"),
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
print("\nChecking dependencies...\n")
|
| 58 |
+
|
| 59 |
+
all_ok = True
|
| 60 |
+
for module, package in dependencies:
|
| 61 |
+
if not check_dependency(module, package):
|
| 62 |
+
all_ok = False
|
| 63 |
+
|
| 64 |
+
print("\n" + "="*60)
|
| 65 |
+
if all_ok:
|
| 66 |
+
print("✓ All dependencies installed successfully!")
|
| 67 |
+
print("\nYou can now run:")
|
| 68 |
+
print(" python main.py")
|
| 69 |
+
else:
|
| 70 |
+
print("✗ Some dependencies are missing!")
|
| 71 |
+
print("\nPlease install missing dependencies:")
|
| 72 |
+
print(" pip install -r requirements.txt")
|
| 73 |
+
sys.exit(1)
|
| 74 |
+
|
| 75 |
+
print("="*60)
|
| 76 |
+
|
| 77 |
+
# Check optional features
|
| 78 |
+
print("\nChecking system modules...\n")
|
| 79 |
+
|
| 80 |
+
# Check our custom modules
|
| 81 |
+
custom_modules = [
|
| 82 |
+
"embedding_service",
|
| 83 |
+
"qdrant_service",
|
| 84 |
+
"advanced_rag",
|
| 85 |
+
"pdf_parser",
|
| 86 |
+
"multimodal_pdf_parser",
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
for module in custom_modules:
|
| 90 |
+
try:
|
| 91 |
+
__import__(module)
|
| 92 |
+
print(f"✓ {module}.py")
|
| 93 |
+
except ImportError as e:
|
| 94 |
+
print(f"✗ {module}.py - ERROR: {e}")
|
| 95 |
+
|
| 96 |
+
print("\n" + "="*60)
|
| 97 |
+
print("Verification complete!")
|
| 98 |
+
print("="*60)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
main()
|