Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
| from threading import Thread | |
| import re | |
| import time | |
| from PIL import Image | |
| import torch | |
| import spaces | |
| #import subprocess | |
| #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") | |
| model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", | |
| torch_dtype=torch.bfloat16, | |
| #_attn_implementation="flash_attention_2" | |
| ).to("cuda") | |
| def model_inference( | |
| input_dict, history, decoding_strategy, temperature, max_new_tokens, | |
| repetition_penalty, top_p | |
| ): | |
| text = input_dict["text"] | |
| print(input_dict["files"]) | |
| if len(input_dict["files"]) > 1: | |
| images = [Image.open(image).convert("RGB") for image in input_dict["files"]] | |
| elif len(input_dict["files"]) == 1: | |
| images = [Image.open(input_dict["files"][0]).convert("RGB")] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| gr.Error("Please input a query and optionally image(s).") | |
| if text == "" and images: | |
| gr.Error("Please input a text query along the image(s).") | |
| resulting_messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "image"} for _ in range(len(images))] + [ | |
| {"type": "text", "text": text} | |
| ] | |
| } | |
| ] | |
| prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
| inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
| inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
| generation_args = { | |
| "max_new_tokens": max_new_tokens, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| assert decoding_strategy in [ | |
| "Greedy", | |
| "Top P Sampling", | |
| ] | |
| if decoding_strategy == "Greedy": | |
| generation_args["do_sample"] = False | |
| elif decoding_strategy == "Top P Sampling": | |
| generation_args["temperature"] = temperature | |
| generation_args["do_sample"] = True | |
| generation_args["top_p"] = top_p | |
| generation_args.update(inputs) | |
| # Generate | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True) | |
| generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
| generated_text = "" | |
| thread = Thread(target=model.generate, kwargs=generation_args) | |
| thread.start() | |
| yield "..." | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| generated_text_without_prompt = buffer#[len(ext_buffer):] | |
| time.sleep(0.01) | |
| yield buffer | |
| examples=[ | |
| [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
| [{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
| [{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
| [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
| [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
| ] | |
| demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫", | |
| description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
| additional_inputs=[gr.Radio(["Top P Sampling", | |
| "Greedy"], | |
| value="Greedy", | |
| label="Decoding strategy", | |
| #interactive=True, | |
| info="Higher values is equivalent to sampling more low-probability tokens.", | |
| ), gr.Slider( | |
| minimum=0.0, | |
| maximum=5.0, | |
| value=0.4, | |
| step=0.1, | |
| interactive=True, | |
| label="Sampling temperature", | |
| info="Higher values will produce more diverse outputs.", | |
| ), | |
| gr.Slider( | |
| minimum=8, | |
| maximum=1024, | |
| value=512, | |
| step=1, | |
| interactive=True, | |
| label="Maximum number of new tokens to generate", | |
| ), gr.Slider( | |
| minimum=0.01, | |
| maximum=5.0, | |
| value=1.2, | |
| step=0.01, | |
| interactive=True, | |
| label="Repetition penalty", | |
| info="1.0 is equivalent to no penalty", | |
| ), | |
| gr.Slider( | |
| minimum=0.01, | |
| maximum=0.99, | |
| value=0.8, | |
| step=0.01, | |
| interactive=True, | |
| label="Top P", | |
| info="Higher values is equivalent to sampling more low-probability tokens.", | |
| )],cache_examples=False | |
| ) | |
| demo.launch(debug=True) | |