Spaces:
Runtime error
Runtime error
File size: 1,905 Bytes
72f929c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Install required packages
!pip install transformers datasets torchaudio TTS huggingface_hub
# Import libraries
from datasets import load_dataset, DatasetDict
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
import torch
# Load existing TTS model (you can choose other models too)
model_id = "microsoft/speecht5_tts" # Example model
processor = SpeechT5Processor.from_pretrained(model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
# Load your conlang dataset
dataset = load_dataset("csv", data_files={"train": "./dataset/train.csv"}, delimiter=",")
# Preprocessing: convert text to tokens and load audio
# You can define your own tokenizer for your conlang here
def preprocess(example):
input_ids = processor.tokenizer(example["text"], return_tensors="pt").input_ids[0]
return {"input_ids": input_ids}
dataset = dataset.map(preprocess)
# Prepare DataLoader
from torch.utils.data import DataLoader
def collate_fn(batch):
input_ids = torch.nn.utils.rnn.pad_sequence([b["input_ids"] for b in batch], batch_first=True)
return {"input_ids": input_ids}
train_loader = DataLoader(dataset["train"], batch_size=4, shuffle=True, collate_fn=collate_fn)
# Fine-tune the model
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
model.train()
for epoch in range(10): # example: 10 epochs
for batch in train_loader:
outputs = model(input_ids=batch["input_ids"], labels=batch["input_ids"])
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
print(f"Epoch {epoch+1}, Loss: {loss.item()}")
# Save model to Hugging Face Hub (optional)
from huggingface_hub import HfApi, HfFolder, Repository
repo = Repository(local_dir="./conlang-tts", clone_from="your-username/conlang-tts")
model.save_pretrained("./conlang-tts")
processor.save_pretrained("./conlang-tts")
repo.push_to_hub()
|