Spaces:
Sleeping
Sleeping
File size: 21,577 Bytes
3912a9f 78d786d b8bcfa7 78d786d 3912a9f b8bcfa7 3912a9f a6d9600 3912a9f a6d9600 3912a9f 05db40e 3912a9f 13d264b 3912a9f 78d786d 62a2083 78d786d 62a2083 78d786d 62a2083 62cfa20 62a2083 62cfa20 62a2083 78d786d 62a2083 62cfa20 62a2083 62cfa20 62a2083 62cfa20 62a2083 62cfa20 62a2083 62cfa20 62a2083 78d786d 3912a9f 78d786d 3912a9f 78d786d 3912a9f 78d786d b8bcfa7 78d786d b8bcfa7 78d786d b8bcfa7 78d786d 3912a9f 78d786d 3912a9f 78d786d 3912a9f f4d567d 3912a9f 78d786d 3912a9f 78d786d 3912a9f 78d786d 3912a9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoConfig, RobertaModel
from modeling_dlmberta import InteractionModelATTNForRegression, StdScaler
from configuration_dlmberta import InteractionModelATTNConfig
from chemberta import ChembertaTokenizer
import json
import os
from pathlib import Path
import logging
# Import visualization functions
from analysis import plot_crossattention_weights, plot_presum
from PIL import Image, ImageDraw, ImageFont
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_placeholder_image(width=400, height=300, text="No visualization available", bg_color=(0, 0, 0, 0)):
"""
Create a transparent placeholder image with text
Args:
width (int): Image width
height (int): Image height
text (str): Text to display
bg_color (tuple): Background color (R, G, B, A) - (0,0,0,0) for transparent
Returns:
PIL.Image: Transparent placeholder image
"""
# Create image with transparent background
img = Image.new('RGBA', (width, height), bg_color)
draw = ImageDraw.Draw(img)
# Try to use a default font, fallback to default if not available
try:
font = ImageFont.truetype("arial.ttf", 16)
except:
try:
font = ImageFont.load_default()
except:
font = None
# Get text size and position for centering
if font:
bbox = draw.textbbox((0, 0), text, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
else:
# Rough estimation if no font available
text_width = len(text) * 8
text_height = 16
x = (width - text_width) // 2
y = (height - text_height) // 2
# Draw text in gray
draw.text((x, y), text, fill=(128, 128, 128, 255), font=font)
return img
class DrugTargetInteractionApp:
def __init__(self):
self.model = None
self.target_tokenizer = None
self.drug_tokenizer = None
self.scaler = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(self, model_path="./"):
"""Load the pre-trained model and tokenizers"""
try:
# Load configuration
config = InteractionModelATTNConfig.from_pretrained(model_path)
# Load drug encoder (ChemBERTa)
drug_encoder_config = AutoConfig.from_pretrained("DeepChem/ChemBERTa-77M-MTR")
drug_encoder_config.pooler = None
drug_encoder = RobertaModel(config=drug_encoder_config, add_pooling_layer=False)
# Load target encoder
target_encoder = AutoModel.from_pretrained("IlPakoZ/RNA-BERTa9700")
# Load scaler if exists
scaler_path = os.path.join(model_path, "scaler.config")
scaler = None
if os.path.exists(scaler_path):
scaler = StdScaler()
scaler.load(model_path)
self.model = InteractionModelATTNForRegression.from_pretrained(
model_path,
config=config,
target_encoder=target_encoder,
drug_encoder=drug_encoder,
scaler=scaler
)
self.model.to(self.device)
self.model.eval()
# Load tokenizers
self.target_tokenizer = AutoTokenizer.from_pretrained(
os.path.join(model_path, "target_tokenizer")
)
# Load drug tokenizer (ChemBERTa)
vocab_file = os.path.join(model_path, "drug_tokenizer", "vocab.json")
self.drug_tokenizer = ChembertaTokenizer(vocab_file)
logger.info("Model and tokenizers loaded successfully!")
return True
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return False
def predict_interaction(self, target_sequence, drug_smiles, max_length=512):
"""Predict drug-target interaction"""
if self.model is None:
return "Error: Model not loaded. Please load a model first."
try:
# Tokenize inputs
target_inputs = self.target_tokenizer(
target_sequence,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
drug_inputs = self.drug_tokenizer(
drug_smiles,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Make prediction
self.model.INTERPR_DISABLE_MODE()
with torch.no_grad():
prediction = self.model(target_inputs, drug_inputs)
# Unscale if scaler exists
if self.model.scaler is not None:
prediction = self.model.unscale(prediction)
prediction_value = prediction.cpu().numpy()[0][0]
return f"Predicted Binding Affinity: {prediction_value:.4f}"
except Exception as e:
logger.error(f"Prediction error: {str(e)}")
return f"Error during prediction: {str(e)}"
def visualize_interaction(self, target_sequence, drug_smiles):
"""
Generate visualization images for drug-target interaction
Args:
target_sequence (str): RNA sequence
drug_smiles (str): Drug SMILES notation
Returns:
tuple: (cross_attention_image, raw_contribution_image, normalized_contribution_image, status_message)
"""
if self.model is None:
return None, None, None, "Error: Model not loaded. Please load a model first."
try:
# Tokenize inputs
target_inputs = self.target_tokenizer(
target_sequence,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
drug_inputs = self.drug_tokenizer(
drug_smiles,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Enable interpretation mode
self.model.INTERPR_ENABLE_MODE()
# Make prediction and extract visualization data
with torch.no_grad():
prediction = self.model(target_inputs, drug_inputs)
# Unscale if scaler exists
if self.model.scaler is not None:
prediction = self.model.unscale(prediction)
prediction_value = prediction.cpu().numpy()[0][0]
# Extract data needed for visualizations
presum_values = self.model.model.presum_layer # Shape: (1, seq_len)
cross_attention_weights = self.model.model.crossattention_weights # Shape: (batch, heads, seq_len, seq_len)
# Get model parameters for scaling
w = self.model.model.w.squeeze(1)
b = self.model.model.b
scaler = self.model.model.scaler
logger.info(f"Target inputs shape: {target_inputs['input_ids'].shape}")
logger.info(f"Drug inputs shape: {drug_inputs['input_ids'].shape}")
# Generate visualizations
try:
# 1. Cross-attention heatmap
cross_attention_img = None
logger.info(f"Cross-attention weights type: {type(cross_attention_weights)}")
if cross_attention_weights is not None:
logger.info(f"Cross-attention weights shape: {cross_attention_weights.shape if hasattr(cross_attention_weights, 'shape') else 'No shape attr'}")
try:
cross_attn_matrix = cross_attention_weights[0, 0]
if cross_attn_matrix is not None:
logger.info(f"Extracted cross-attention matrix shape: {cross_attn_matrix.shape}")
logger.info(f"Target attention mask shape: {target_inputs['attention_mask'].shape}")
logger.info(f"Drug attention mask shape: {drug_inputs['attention_mask'].shape}")
cross_attention_img = plot_crossattention_weights(
target_inputs["attention_mask"][0],
drug_inputs["attention_mask"][0],
target_inputs,
drug_inputs,
cross_attn_matrix,
self.target_tokenizer,
self.drug_tokenizer
)
else:
logger.warning("Could not extract valid cross-attention matrix")
except (IndexError, TypeError, AttributeError) as e:
logger.warning(f"Error extracting cross-attention matrix: {str(e)}")
cross_attn_matrix = None
else:
logger.warning("Cross-attention weights are None")
except Exception as e:
logger.error(f"Cross-attention visualization error: {str(e)}")
cross_attention_img = None
try:
# 2. Normalized contribution visualization (always generate)
normalized_img = None
if presum_values is not None:
normalized_img = plot_presum(
target_inputs,
presum_values.detach(), # Detach the tensor
scaler,
w.detach(), # Detach the tensor
b.detach(), # Detach the tensor
self.target_tokenizer,
raw_affinities=False
)
else:
logger.warning("Presum values are None")
except Exception as e:
logger.error(f"Normalized contribution visualization error: {str(e)}")
normalized_img = None
try:
# 3. Raw contribution visualization (only if pKd > 0)
raw_img = None
if prediction_value > 0 and presum_values is not None:
raw_img = plot_presum(
target_inputs,
presum_values.detach(), # Detach the tensor
scaler,
w.detach(), # Detach the tensor
b.detach(), # Detach the tensor
self.target_tokenizer,
raw_affinities=True
)
else:
if prediction_value <= 0:
logger.info("Skipping raw affinities visualization as pKd <= 0")
if presum_values is None:
logger.warning("Cannot generate raw visualization: presum values are None")
except Exception as e:
logger.error(f"Raw contribution visualization error: {str(e)}")
raw_img = None
# Disable interpretation mode after use
self.model.INTERPR_DISABLE_MODE()
# Create placeholder images if generation failed
if cross_attention_img is None:
cross_attention_img = create_placeholder_image(
text="Cross-Attention Heatmap\nFailed to generate"
)
if normalized_img is None:
normalized_img = create_placeholder_image(
text="Normalized Contribution\nFailed to generate"
)
if raw_img is None and prediction_value > 0:
raw_img = create_placeholder_image(
text="Raw Contribution\nFailed to generate"
)
elif raw_img is None:
raw_img = create_placeholder_image(
text="Raw Contribution\nSkipped (pKd โค 0)"
)
status_msg = f"Predicted Binding Affinity: {prediction_value:.4f}"
if prediction_value <= 0:
status_msg += " (Raw contribution visualization skipped due to non-positive pKd)"
if cross_attention_weights is None:
status_msg += " (Cross-attention visualization failed: weights not available)"
return cross_attention_img, raw_img, normalized_img, status_msg
except Exception as e:
logger.error(f"Visualization error: {str(e)}")
# Make sure to disable interpretation mode even if there's an error
try:
self.model.INTERPR_DISABLE_MODE()
except:
pass
return None, None, None, f"Error during visualization: {str(e)}"
# Initialize the app
app = DrugTargetInteractionApp()
def predict_wrapper(target_seq, drug_smiles):
"""Wrapper function for Gradio interface"""
if not target_seq.strip() or not drug_smiles.strip():
return "Please provide both target sequence and drug SMILES."
return app.predict_interaction(target_seq, drug_smiles)
def visualize_wrapper(target_seq, drug_smiles):
"""Wrapper function for visualization"""
if not target_seq.strip() or not drug_smiles.strip():
return None, None, None, "Please provide both target sequence and drug SMILES."
return app.visualize_interaction(target_seq, drug_smiles)
def load_model_wrapper(model_path):
"""Wrapper function to load model"""
if app.load_model(model_path):
return "Model loaded successfully!"
else:
return "Failed to load model. Check the path and files."
# Create Gradio interface
with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 30px;">
<h1 style="color: #2E86AB; font-size: 2.5em; margin-bottom: 10px;">
๐งฌ Drug-Target Interaction Predictor
</h1>
<p style="font-size: 1.2em; color: #666;">
Predict binding affinity between drugs and target RNA sequences using deep learning
</p>
</div>
""")
with gr.Tab("๐ฎ Prediction"):
with gr.Row():
with gr.Column(scale=1):
target_input = gr.Textbox(
label="Target RNA Sequence",
placeholder="Enter RNA sequence (e.g., AUGCUAGCUAGUACGUA...)",
lines=4,
max_lines=6
)
drug_input = gr.Textbox(
label="Drug SMILES",
placeholder="Enter SMILES notation (e.g., CC(C)CC1=CC=C(C=C1)C(C)C(=O)O)",
lines=2
)
# Buttons side by side
with gr.Row():
predict_btn = gr.Button("๐ Predict Interaction", variant="primary", size="lg")
visualize_btn = gr.Button("๐ Visualize Interaction", variant="secondary", size="lg")
with gr.Column(scale=1):
prediction_output = gr.Textbox(
label="Prediction Result",
interactive=False,
lines=3
)
# Visualization outputs section
gr.HTML("<h3 style='margin-top: 30px; color: #2E86AB;'>๐ Interaction Visualizations</h3>")
with gr.Row():
with gr.Column():
viz_image1 = gr.Image(
label="Cross-Attention Heatmap",
type="pil",
interactive=False,
container=True,
height=300,
value=create_placeholder_image(text="Cross-Attention Heatmap\n(Click Visualize to generate)")
)
with gr.Column():
viz_image2 = gr.Image(
label="Raw pKd Contribution Visualization",
type="pil",
interactive=False,
container=True,
height=300,
value=create_placeholder_image(text="Raw pKd Contribution\n(Click Visualize to generate)")
)
with gr.Column():
viz_image3 = gr.Image(
label="Normalized pKd Contribution Visualization",
type="pil",
interactive=False,
container=True,
height=300,
value=create_placeholder_image(text="Normalized pKd Contribution\n(Click Visualize to generate)")
)
viz_status = gr.Textbox(
label="Visualization Status",
interactive=False,
lines=2
)
# Example inputs
gr.HTML("<h3 style='margin-top: 20px; color: #2E86AB;'>๐ Example Inputs:</h3>")
examples = gr.Examples(
examples=[
[
"AUGCUAGCUAGUACGUAUAUCUGCACUGC",
"CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"
],
[
"AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU",
"C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2"
]
],
inputs=[target_input, drug_input],
outputs=prediction_output,
fn=predict_wrapper,
cache_examples=False
)
# Button click events
predict_btn.click(
fn=predict_wrapper,
inputs=[target_input, drug_input],
outputs=prediction_output
)
visualize_btn.click(
fn=visualize_wrapper,
inputs=[target_input, drug_input],
outputs=[viz_image1, viz_image2, viz_image3, viz_status]
)
with gr.Tab("โ๏ธ Model Settings"):
gr.HTML("<h3 style='color: #2E86AB;'>Model Configuration</h3>")
model_path_input = gr.Textbox(
label="Model Path",
value="./",
placeholder="Path to model directory"
)
load_model_btn = gr.Button("๐ฅ Load Model", variant="secondary")
model_status = gr.Textbox(
label="Status",
interactive=False,
value="No model loaded"
)
load_model_btn.click(
fn=load_model_wrapper,
inputs=model_path_input,
outputs=model_status
)
with gr.Tab("โน๏ธ About"):
gr.Markdown("""
## About This Application
This application uses a deep learning model for predicting drug-target interactions. The model architecture includes:
- **Target Encoder**: Processes RNA sequences
- **Drug Encoder**: Processes molecular SMILES notation
- **Cross-Attention Mechanism**: Captures interactions between drugs and targets
- **Regression Head**: Predicts binding affinity scores
### Input Requirements:
- **Target Sequence**: RNA sequence of the target
- **Drug SMILES**: Simplified Molecular Input Line Entry System notation
### Model Features:
- Cross-attention for drug-target interaction modeling
- Dropout for regularization
- Layer normalization for stable training
- Interpretability mode for contribution and attention visualization
### Usage Tips:
1. Load your trained model using the Model Settings tab
2. Enter a RNA sequence and drug SMILES
3. Click "Predict Interaction" to get binding affinity prediction
4. Click "Visualize Interaction" to see detailed interaction analysis
For best results, ensure your input sequences are properly formatted and within reasonable length limits.
### Visualization Features:
- **Cross-Attention Heatmap**: Shows cross-attention between drug and target tokens
- **Raw pKd Contribution**: Shows raw signed contributions (only when pKd > 0)
- **Normalized pKd Contribution**: Shows normalized non-negative contributions
""")
# Launch the app
if __name__ == "__main__":
# Try to load model on startup
if os.path.exists("./config.json"):
app.load_model("./")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |