File size: 8,307 Bytes
78d786d
 
 
696610f
78d786d
 
 
 
 
696610f
 
 
 
78d786d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696610f
 
78d786d
 
b7daa57
78d786d
b7daa57
78d786d
696610f
 
78d786d
 
b7daa57
78d786d
 
 
 
b7daa57
696610f
78d786d
 
 
b7daa57
78d786d
 
7d1331e
78d786d
7d1331e
 
 
78d786d
 
 
 
7d1331e
 
78d786d
 
 
 
7d1331e
78d786d
 
 
 
7d1331e
78d786d
7d1331e
696610f
78d786d
 
7d1331e
78d786d
 
 
 
 
 
 
7d1331e
78d786d
 
 
 
 
 
7d1331e
696610f
78d786d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import matplotlib.pyplot as plt
import os
import logging
from matplotlib.colors import LinearSegmentedColormap
from mpl_toolkits.axes_grid1 import make_axes_locatable
from PIL import Image
import io

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def plot_crossattention_weights(target_mask, drug_mask, target_tokenized, drug_tokenized, 
                               crossattention_weights, target_tokenizer, drug_tokenizer):
    """
    Plots the cross-attention weights for a given drug-target pair, only considering unmasked tokens.
    
    Parameters:
        target_mask (np.ndarray): Boolean mask for target tokens.
        drug_mask (np.ndarray): Boolean mask for drug tokens.
        target_tokenized (dict): Tokenized target sequence.
        drug_tokenized (dict): Tokenized drug sequence.
        crossattention_weights (np.ndarray): The cross-attention weights.
        target_tokenizer: Target tokenizer instance.
        drug_tokenizer: Drug tokenizer instance.
        
    Returns:
        PIL.Image: The generated attention heatmap image.
    """
    logger.info("Starting plot_crossattention_weights")

    # Convert masks to numpy arrays if they're tensors
    if hasattr(target_mask, 'cpu'):
        target_mask = target_mask.cpu()
    if hasattr(drug_mask, 'cpu'):
        drug_mask = drug_mask.cpu()
    
    logger.info(f"Target mask shape: {target_mask.shape}, Drug mask shape: {drug_mask.shape}")

    # Get tokens for unmasked positions
    tokens_input = target_tokenized["input_ids"][0][target_mask]

    target_token_str = target_tokenizer.convert_ids_to_tokens(tokens_input)

    tokens_input = drug_tokenized["input_ids"][0][drug_mask]
    drug_token_str = drug_tokenizer.convert_ids_to_tokens(tokens_input)

    logger.info(f"Drug tokens: {drug_token_str}")

    # Extract subset of attention weights
    if hasattr(crossattention_weights, 'cpu'):
        crossattention_weights = crossattention_weights.cpu()
    
    subset = crossattention_weights[target_mask][:, drug_mask]
    subset_np = subset.detach().numpy()  # Convert to numpy for matplotlib
    
    logger.info(f"Subset shape: {subset_np.shape}")
    height, width = subset_np.shape
   
    fig, ax = plt.subplots(
        figsize=(width * 0.2 + 2, height * 0.2 + 3),
        dpi=300
    )
    im = ax.imshow(subset_np, cmap='hot', interpolation='nearest')
   
    plt.colorbar(im, ax=ax, orientation='vertical', fraction=0.05, shrink=0.8)
    plt.title("Cross-Attention Weights")
    plt.xlabel("Drug Tokens")
    plt.ylabel("Target Tokens")
   
    # Create vertical labels for drug tokens
    vertical_labels = ['\n'.join(label) for label in drug_token_str]
    plt.xticks(ticks=np.arange(width), labels=vertical_labels)
    plt.yticks(ticks=np.arange(height), labels=target_token_str)
   
    # Add text annotations
    max_val = subset_np.max()
    logger.info(f"Max crossattention weight: {max_val}")
    for i in range(height):
        for j in range(width):
            val = subset_np[i, j]
            if val > max_val / 2:
                # Extract just the digits after the decimal (no leading '0.')
                text = f"{val % 1:.2f}"[2:]
                plt.text(j, i, text,
                        ha='center', va='center',
                        color="black",
                        fontsize=6)
   
    # Convert to PIL Image
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
   
    logger.info("Finished plot_crossattention_weights successfully")
    return img

def plot_presum(tokenized_input, affinities, scaler, w, b, target_tokenizer, 
               raw_affinities=False):
    """
    Generates an annotated 1D heatmap of token-level contribution scores.

    Args:
        tokenized_input (dict): Output of a tokenizer with keys:
            - 'input_ids' (torch.Tensor): token ID sequences, shape (1, seq_len)
            - 'attention_mask' (torch.Tensor): mask indicating padding tokens
        affinities (torch.Tensor): Final layer summation affinity contributions from the model, shape (1, seq_len)
        scaler (object): Fitted scaler with `mean_` and `std_` attributes for inverse-transform.
        w (float): Weight applied to the summed affinities before bias.
        b (float): Bias added to the summed affinities.
        target_tokenizer: Target tokenizer instance.
        raw_affinities (bool): If True, plot raw (signed) contributions on a blue—white—red scale.
            If False, enforce non-negative contributions and use a white—red scale.
            Default: False

    Returns:
        PIL.Image: The generated contribution visualization image.
        
    Raises:
        ValueError: If `sum(transformed_affinities) < 0` when `raw_affinities=False`.
    """
    colors = [
        (1.0, 0.95, 0.95),  
        (1.0, 0.5, 0.5),  
        (0.8, 0.0, 0.0)   
    ]

    custom_reds = LinearSegmentedColormap.from_list("CustomReds", colors)
    
    # Convert tensors to numpy if needed
    if hasattr(affinities, 'cpu'):
        affinities = affinities.cpu().numpy()
    if hasattr(w, 'cpu'):
        w = w.cpu().numpy()
    if hasattr(b, 'cpu'):
        b = b.cpu().numpy()
    
    # Apply transformations
    affinities = w * (affinities[0]) + b / len(affinities[0])
    affinities = (affinities * scaler.std_) + scaler.mean_ / len(affinities)
    
    if sum(affinities) < 0 and not raw_affinities:
        raise ValueError("Cannot use non-raw affinities with negative binding affinity prediction")

    # Get token strings
    tokens_input = tokenized_input["input_ids"][0]
    if hasattr(tokens_input, 'cpu'):
        tokens_input = tokens_input.cpu().numpy()
    token_str = target_tokenizer.convert_ids_to_tokens(tokens_input)

    # Handle padding
    pad_mask = tokenized_input["attention_mask"][0] == 0
    if hasattr(pad_mask, 'cpu'):
        pad_mask = pad_mask.cpu().numpy()
    
    padding_affinities_sum = affinities[pad_mask].sum()
    non_padding_affinities = affinities[~pad_mask]
    processed_affinities = non_padding_affinities + padding_affinities_sum/len(non_padding_affinities)

    # Make affinities non-negative if requested
    if not raw_affinities:
        all_negative_non_paddings = processed_affinities[processed_affinities < 0]

        while(len(all_negative_non_paddings) > 0):
            all_positive_non_paddings = processed_affinities[processed_affinities > 0]

            processed_affinities[processed_affinities < 0] = 0
            processed_affinities[processed_affinities > 0] = all_positive_non_paddings + all_negative_non_paddings.sum()/len(all_positive_non_paddings)
            all_negative_non_paddings = processed_affinities[processed_affinities < 0]

    # Create visualization
    max_per_row = 20
    n = len(processed_affinities)
    n_rows = int(np.ceil(n / max_per_row))
    grid = np.full((n_rows, max_per_row), np.nan)
    grid.flat[:n] = processed_affinities

    fig, ax = plt.subplots(
        figsize = (max_per_row * 1, n_rows * 1 + 2),
        dpi = 300
    )

    ax.set_xticks([])
    ax.set_yticks([])

    im = ax.imshow(
        grid,
        aspect='equal',
        cmap='bwr' if raw_affinities else custom_reds,
        vmin=np.nanmin(grid) if not raw_affinities else -max(abs(np.nanmin(grid)), abs(np.nanmax(grid))),
        vmax=np.nanmax(grid) if not raw_affinities else max(abs(np.nanmin(grid)), abs(np.nanmax(grid))),
    )

    def wrap_text(text, width=8):
        return '\n'.join(text[i:i+width] for i in range(0, len(text), width))

    for idx, val in enumerate(processed_affinities):
        r, c = divmod(idx, max_per_row)
        wrapped_token = wrap_text(token_str[idx], width=8)
        ax.text(c, r, f"{val:.2f}\n{wrapped_token}",
                ha='center', va='center', fontsize=8)
        
    divider = make_axes_locatable(ax)
    cax = divider.append_axes('bottom', size=0.2, pad=0.3)
    cbar = fig.colorbar(im, cax=cax, orientation='horizontal')
    cbar.set_label("Contribution")
    
    # Convert to PIL Image
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    
    return img