File size: 12,649 Bytes
3912a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d264b
 
3912a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d264b
 
 
 
 
 
 
3912a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
from transformers import PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_, constant_
from configuration_dlmberta import InteractionModelATTNConfig
import math

class StdScaler():
    def fit(self, X):
        self.mean_ = torch.mean(X).item()
        self.std_ = torch.std(X, correction=0).item()

    def fit_transform(self, X):
        self.mean_ = torch.mean(X).item()
        self.std_ = torch.std(X, correction=0).item()

        return (X-self.mean_)/self.std_
        
    def transform(self, X):
        return (X-self.mean_)/self.std_

    def inverse_transform(self, X):
        return (X*self.std_)+self.mean_
        
    def save(self, directory):
        with open(directory+"/scaler.config", "w") as f:
            f.write(str(self.mean_)+"\n")
            f.write(str(self.std_)+"\n")

    def load(self, directory):
        with open(directory+"/scaler.config", "r") as f:
            self.mean_ = float(f.readline())
            self.std_ = float(f.readline())
    
    
class InteractionModelATTNForRegression(PreTrainedModel):
    config_class = InteractionModelATTNConfig

    def __init__(self, config, target_encoder, drug_encoder, scaler=None):
        super().__init__(config)
        self.model = InteractionModelATTN(target_encoder, 
                                          drug_encoder,
                                          scaler,
                                          config.attention_dropout,
                                          config.hidden_dropout,
                                          config.num_heads)
        self.scaler = scaler
        
    def INTERPR_ENABLE_MODE(self):
        self.model.INTERPR_ENABLE_MODE()

    def INTERPR_DISABLE_MODE(self):
        self.model.INTERPR_DISABLE_MODE()

    def INTERPR_OVERRIDE_ATTN(self, new_weights):
        self.model.INTERPR_OVERRIDE_ATTN(new_weights)

    def INTERPR_RESET_OVERRIDE_ATTN(self):
        self.model.INTERPR_RESET_OVERRIDE_ATTN()

    def forward(self, x1, x2):
        return self.model(x1, x2)

    def unscale(self, x):
        return self.model.unscale(x)



class CrossAttention(nn.Module):
    def __init__(self, embed_dim, num_heads, attention_dropout=0.0, hidden_dropout=0.0, add_bias_kv=False, **factory_kwargs):
        """
        Initializes the CrossAttention layer.

        Args:
            embed_dim (int): Dimension of the input embeddings.
            num_heads (int): Number of attention heads.
            dropout (float): Dropout probability for attention weights.
        """
        super().__init__()
        self.attention_dropout = attention_dropout
        self.hidden_dropout = hidden_dropout
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads

        self.scaling = self.head_dim ** -0.5

        if self.head_dim * num_heads != embed_dim:
            raise ValueError("embed_dim must be divisible by num_heads")
        
        # Linear projections for query, key, and value.
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.attn_dropout = nn.Dropout(attention_dropout)

        xavier_uniform_(self.q_proj.weight)
        xavier_uniform_(self.k_proj.weight)
        xavier_uniform_(self.v_proj.weight)
        constant_(self.q_proj.bias, 0.)
        constant_(self.k_proj.bias, 0.)
        constant_(self.v_proj.bias, 0.)

        # Output projection.
        self.out_proj = nn.Linear(embed_dim, embed_dim)
        constant_(self.out_proj.bias, 0)

        self.drop_out = nn.Dropout(hidden_dropout)
     
    def forward(self, query, key, value, key_padding_mask=None, attn_mask=None, replace_weights=None):
        """
        Forward pass for cross attention.

        Args:
            query (Tensor): Query embeddings of shape (batch_size, query_len, embed_dim).
            key (Tensor): Key embeddings of shape (batch_size, key_len, embed_dim).
            value (Tensor): Value embeddings of shape (batch_size, key_len, embed_dim).
            attn_mask (Tensor, optional): Attention mask of shape (batch_size, num_heads, query_len, key_len).

        Returns:
            output (Tensor): The attended output of shape (batch_size, query_len, embed_dim).
            attn_weights (Tensor): The attention weights of shape (batch_size, num_heads, query_len, key_len).
        """

        batch_size, query_len, _ = query.size()
        _, key_len, _ = key.size()

        Q = self.q_proj(query)
        K = self.k_proj(key)
        V = self.v_proj(value)

        Q = Q.view(batch_size, self.num_heads, query_len, self.head_dim)
        K = K.view(batch_size, self.num_heads, key_len, self.head_dim)
        V = V.view(batch_size, self.num_heads, key_len, self.head_dim)
        
        # Compute scaled dot-product attention scores
        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)  # (batch_size, num_heads, query_len, key_len)

        if key_padding_mask is not None:
            # Convert boolean mask (False -> -inf, True -> 0)
            key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(1)  # (B, 1, 1, key_len) for broadcasting
            scores = scores.masked_fill(key_padding_mask, float('-inf'))  # Set masked positions to -inf
    
        if replace_weights is not None:
            scores = replace_weights

        # Compute attention weights using softmax
        attn_weights = torch.nn.functional.softmax(scores, dim=-1)  # (batch_size, num_heads, query_len, key_len)
        self.scores = scores
        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(1)  # Shape: (batch_size, 1, query_len, key_len)
            attn_weights = attn_weights.masked_fill(attn_mask, 0)  # Set masked positions to 0



        # Optionally apply dropout to the attention weights if self.dropout is defined
        attn_weights = self.attn_dropout(attn_weights)
        # Compute the weighted sum of the values
        attn_output = torch.matmul(attn_weights, V)  # (batch_size, num_heads, query_len, head_dim)
        # Recombine heads: transpose and reshape back to (batch_size, query_len, embed_dim)
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, query_len, self.embed_dim)

        # Final linear projection and dropout
        output = self.out_proj(attn_output)
        output = self.drop_out(output)

        return output, attn_weights


class InteractionModelATTN(nn.Module):
    def __init__(self, target_encoder, drug_encoder, scaler, attention_dropout, hidden_dropout, num_heads=1, kernel_size=1):
        super().__init__()
        self.replace_weights = None
        self.crossattention_weights = None
        self.presum_layer = None
        self.INTERPR_MODE = False

        self.scaler = scaler
        self.attention_dropout = attention_dropout
        self.hidden_dropout = hidden_dropout

        self.target_encoder = target_encoder
        self.drug_encoder = drug_encoder
        self.kernel_size = kernel_size
        self.lin_map_target = nn.Linear(512, 384)
        self.dropout_map_target = nn.Dropout(hidden_dropout)

        self.lin_map_drug = nn.Linear(384, 384)
        self.dropout_map_drug = nn.Dropout(hidden_dropout)

        self.crossattention = CrossAttention(384, num_heads, attention_dropout, hidden_dropout)
        self.norm = nn.LayerNorm(384)
        self.summary1 = nn.Linear(384, 384)
        self.summary2 = nn.Linear(384, 1)
        self.dropout_summary = nn.Dropout(hidden_dropout)
        self.layer_norm = nn.LayerNorm(384)
        self.gelu = nn.GELU()

        self.w = Parameter(torch.empty(512, 1))
        self.b = Parameter(torch.zeros(1))
        self.pdng = Parameter(torch.tensor(0.0))  # learnable padding value (0-dimensional)

        xavier_uniform_(self.w)

    def forward(self, x1, x2):     
        """
        Forward pass for attention interaction model.

        Args:
            x1 (dict): A dictionary containing input tensors for the target encoder.
                Expected keys:
                    - 'input_ids' (torch.Tensor): Token IDs for the target input.
                    - 'attention_mask' (torch.Tensor): Attention mask for the target input.
            x2 (dict): A dictionary containing input tensors for the drug encoder.
                Expected keys:
                    - 'input_ids' (torch.Tensor): Token IDs for the drug input.
                    - 'attention_mask' (torch.Tensor): Attention mask for the drug input.

        Returns:
            torch.Tensor: A tensor representing the predicted binding affinity.
        """
        x1["attention_mask"] = x1["attention_mask"].bool()   # Fix dropout model issue: https://github.com/pytorch/pytorch/issues/86120
        y1 = self.target_encoder(**x1).last_hidden_state     # The target

        query_mask = x1["attention_mask"].unsqueeze(-1).to(y1.dtype)
        y1 = y1 * query_mask

        x2["attention_mask"] = x2["attention_mask"].bool()   # Fix dropout model issue: https://github.com/pytorch/pytorch/issues/86120
        y2 = self.drug_encoder(**x2).last_hidden_state       # The drug
        key_mask = x2["attention_mask"].unsqueeze(-1).to(y2.dtype)
        y2 = y2 * key_mask
        
        y1 = self.lin_map_target(y1)
        y1 = self.gelu(y1) 
        y1 = self.dropout_map_target(y1)

        y2 = self.lin_map_drug(y2)
        y2 = self.gelu(y2) 
        y2 = self.dropout_map_drug(y2)

        key_padding_mask=(x2["attention_mask"] == 0) # S
        
        replace_weights = None
        # If in interpretation mode, allow the replacement of cross-attention weights
        if self.INTERPR_MODE:
            if self.replace_weights is not None:
                replace_weights = self.replace_weights
        
        out, _ = self.crossattention(y1, y2, y2, key_padding_mask=key_padding_mask, attn_mask=None, replace_weights=replace_weights)
        
        # If in interpretation mode, make cross-attention weights and scores accessible from the outside
        if self.INTERPR_MODE:
            self.crossattention_weights = _
            self.scores = self.crossattention.scores

        out = self.summary1(out * query_mask)
        out = self.gelu(out)
        out = self.dropout_summary(out)
        out = self.summary2(out).squeeze(-1)
        
        # If in interpretation mode, make final summation layer contributions accessible from the outside
        if self.INTERPR_MODE:
            self.presum_layer = out

        
        weighted = out * self.w.squeeze(1)  # [batch, seq_len]
        padding_positions = ~x1["attention_mask"]           # True at padding
        # assign learnable pdng to all padding positions
        weighted = weighted.masked_fill(padding_positions, self.pdng.item())

        # sum across sequence and add bias
        result = weighted.sum(dim=1, keepdim=True) + self.b
        return result

    def train(self, mode = True): 
        super().train(mode)
        self.target_encoder.train(mode)
        self.drug_encoder.train(mode)
        self.crossattention.train(mode)
        return self
    
    def eval(self): 
        super().eval()
        self.target_encoder.eval()
        self.drug_encoder.eval()
        self.crossattention.eval()
        return self
    
    def INTERPR_ENABLE_MODE(self):
        """
        Enables the interpretability mode for the model.
        """
        if self.training:
            raise RuntimeError("Cannot enable interpretability mode while the model is training.")
        self.INTERPR_MODE = True

    def INTERPR_DISABLE_MODE(self):
        """
        Disables the interpretability mode for the model.
        """
        if self.training:
            raise RuntimeError("Cannot disable interpretability mode while the model is training.")
        self.INTERPR_MODE = False

    def INTERPR_OVERRIDE_ATTN(self, new_weights):
        self.replace_weights = new_weights

    def INTERPR_RESET_OVERRIDE_ATTN(self):
        self.replace_weights = None
        
    def unscale(self, x):
        """
        Unscales the labels using a scaler. If the scaler is not specified, don't do anything.

        Parameters:
            target_value: the target values to be unscaled
        """
        with torch.no_grad():
            if self.scaler is None:
                return x
            unscaled = self.scaler.inverse_transform(x)
        return unscaled