Spaces:
Running
Running
File size: 12,649 Bytes
3912a9f 13d264b 3912a9f 13d264b 3912a9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import torch
from transformers import PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_, constant_
from configuration_dlmberta import InteractionModelATTNConfig
import math
class StdScaler():
def fit(self, X):
self.mean_ = torch.mean(X).item()
self.std_ = torch.std(X, correction=0).item()
def fit_transform(self, X):
self.mean_ = torch.mean(X).item()
self.std_ = torch.std(X, correction=0).item()
return (X-self.mean_)/self.std_
def transform(self, X):
return (X-self.mean_)/self.std_
def inverse_transform(self, X):
return (X*self.std_)+self.mean_
def save(self, directory):
with open(directory+"/scaler.config", "w") as f:
f.write(str(self.mean_)+"\n")
f.write(str(self.std_)+"\n")
def load(self, directory):
with open(directory+"/scaler.config", "r") as f:
self.mean_ = float(f.readline())
self.std_ = float(f.readline())
class InteractionModelATTNForRegression(PreTrainedModel):
config_class = InteractionModelATTNConfig
def __init__(self, config, target_encoder, drug_encoder, scaler=None):
super().__init__(config)
self.model = InteractionModelATTN(target_encoder,
drug_encoder,
scaler,
config.attention_dropout,
config.hidden_dropout,
config.num_heads)
self.scaler = scaler
def INTERPR_ENABLE_MODE(self):
self.model.INTERPR_ENABLE_MODE()
def INTERPR_DISABLE_MODE(self):
self.model.INTERPR_DISABLE_MODE()
def INTERPR_OVERRIDE_ATTN(self, new_weights):
self.model.INTERPR_OVERRIDE_ATTN(new_weights)
def INTERPR_RESET_OVERRIDE_ATTN(self):
self.model.INTERPR_RESET_OVERRIDE_ATTN()
def forward(self, x1, x2):
return self.model(x1, x2)
def unscale(self, x):
return self.model.unscale(x)
class CrossAttention(nn.Module):
def __init__(self, embed_dim, num_heads, attention_dropout=0.0, hidden_dropout=0.0, add_bias_kv=False, **factory_kwargs):
"""
Initializes the CrossAttention layer.
Args:
embed_dim (int): Dimension of the input embeddings.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability for attention weights.
"""
super().__init__()
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
if self.head_dim * num_heads != embed_dim:
raise ValueError("embed_dim must be divisible by num_heads")
# Linear projections for query, key, and value.
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.attn_dropout = nn.Dropout(attention_dropout)
xavier_uniform_(self.q_proj.weight)
xavier_uniform_(self.k_proj.weight)
xavier_uniform_(self.v_proj.weight)
constant_(self.q_proj.bias, 0.)
constant_(self.k_proj.bias, 0.)
constant_(self.v_proj.bias, 0.)
# Output projection.
self.out_proj = nn.Linear(embed_dim, embed_dim)
constant_(self.out_proj.bias, 0)
self.drop_out = nn.Dropout(hidden_dropout)
def forward(self, query, key, value, key_padding_mask=None, attn_mask=None, replace_weights=None):
"""
Forward pass for cross attention.
Args:
query (Tensor): Query embeddings of shape (batch_size, query_len, embed_dim).
key (Tensor): Key embeddings of shape (batch_size, key_len, embed_dim).
value (Tensor): Value embeddings of shape (batch_size, key_len, embed_dim).
attn_mask (Tensor, optional): Attention mask of shape (batch_size, num_heads, query_len, key_len).
Returns:
output (Tensor): The attended output of shape (batch_size, query_len, embed_dim).
attn_weights (Tensor): The attention weights of shape (batch_size, num_heads, query_len, key_len).
"""
batch_size, query_len, _ = query.size()
_, key_len, _ = key.size()
Q = self.q_proj(query)
K = self.k_proj(key)
V = self.v_proj(value)
Q = Q.view(batch_size, self.num_heads, query_len, self.head_dim)
K = K.view(batch_size, self.num_heads, key_len, self.head_dim)
V = V.view(batch_size, self.num_heads, key_len, self.head_dim)
# Compute scaled dot-product attention scores
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim) # (batch_size, num_heads, query_len, key_len)
if key_padding_mask is not None:
# Convert boolean mask (False -> -inf, True -> 0)
key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(1) # (B, 1, 1, key_len) for broadcasting
scores = scores.masked_fill(key_padding_mask, float('-inf')) # Set masked positions to -inf
if replace_weights is not None:
scores = replace_weights
# Compute attention weights using softmax
attn_weights = torch.nn.functional.softmax(scores, dim=-1) # (batch_size, num_heads, query_len, key_len)
self.scores = scores
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(1) # Shape: (batch_size, 1, query_len, key_len)
attn_weights = attn_weights.masked_fill(attn_mask, 0) # Set masked positions to 0
# Optionally apply dropout to the attention weights if self.dropout is defined
attn_weights = self.attn_dropout(attn_weights)
# Compute the weighted sum of the values
attn_output = torch.matmul(attn_weights, V) # (batch_size, num_heads, query_len, head_dim)
# Recombine heads: transpose and reshape back to (batch_size, query_len, embed_dim)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, query_len, self.embed_dim)
# Final linear projection and dropout
output = self.out_proj(attn_output)
output = self.drop_out(output)
return output, attn_weights
class InteractionModelATTN(nn.Module):
def __init__(self, target_encoder, drug_encoder, scaler, attention_dropout, hidden_dropout, num_heads=1, kernel_size=1):
super().__init__()
self.replace_weights = None
self.crossattention_weights = None
self.presum_layer = None
self.INTERPR_MODE = False
self.scaler = scaler
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.target_encoder = target_encoder
self.drug_encoder = drug_encoder
self.kernel_size = kernel_size
self.lin_map_target = nn.Linear(512, 384)
self.dropout_map_target = nn.Dropout(hidden_dropout)
self.lin_map_drug = nn.Linear(384, 384)
self.dropout_map_drug = nn.Dropout(hidden_dropout)
self.crossattention = CrossAttention(384, num_heads, attention_dropout, hidden_dropout)
self.norm = nn.LayerNorm(384)
self.summary1 = nn.Linear(384, 384)
self.summary2 = nn.Linear(384, 1)
self.dropout_summary = nn.Dropout(hidden_dropout)
self.layer_norm = nn.LayerNorm(384)
self.gelu = nn.GELU()
self.w = Parameter(torch.empty(512, 1))
self.b = Parameter(torch.zeros(1))
self.pdng = Parameter(torch.tensor(0.0)) # learnable padding value (0-dimensional)
xavier_uniform_(self.w)
def forward(self, x1, x2):
"""
Forward pass for attention interaction model.
Args:
x1 (dict): A dictionary containing input tensors for the target encoder.
Expected keys:
- 'input_ids' (torch.Tensor): Token IDs for the target input.
- 'attention_mask' (torch.Tensor): Attention mask for the target input.
x2 (dict): A dictionary containing input tensors for the drug encoder.
Expected keys:
- 'input_ids' (torch.Tensor): Token IDs for the drug input.
- 'attention_mask' (torch.Tensor): Attention mask for the drug input.
Returns:
torch.Tensor: A tensor representing the predicted binding affinity.
"""
x1["attention_mask"] = x1["attention_mask"].bool() # Fix dropout model issue: https://github.com/pytorch/pytorch/issues/86120
y1 = self.target_encoder(**x1).last_hidden_state # The target
query_mask = x1["attention_mask"].unsqueeze(-1).to(y1.dtype)
y1 = y1 * query_mask
x2["attention_mask"] = x2["attention_mask"].bool() # Fix dropout model issue: https://github.com/pytorch/pytorch/issues/86120
y2 = self.drug_encoder(**x2).last_hidden_state # The drug
key_mask = x2["attention_mask"].unsqueeze(-1).to(y2.dtype)
y2 = y2 * key_mask
y1 = self.lin_map_target(y1)
y1 = self.gelu(y1)
y1 = self.dropout_map_target(y1)
y2 = self.lin_map_drug(y2)
y2 = self.gelu(y2)
y2 = self.dropout_map_drug(y2)
key_padding_mask=(x2["attention_mask"] == 0) # S
replace_weights = None
# If in interpretation mode, allow the replacement of cross-attention weights
if self.INTERPR_MODE:
if self.replace_weights is not None:
replace_weights = self.replace_weights
out, _ = self.crossattention(y1, y2, y2, key_padding_mask=key_padding_mask, attn_mask=None, replace_weights=replace_weights)
# If in interpretation mode, make cross-attention weights and scores accessible from the outside
if self.INTERPR_MODE:
self.crossattention_weights = _
self.scores = self.crossattention.scores
out = self.summary1(out * query_mask)
out = self.gelu(out)
out = self.dropout_summary(out)
out = self.summary2(out).squeeze(-1)
# If in interpretation mode, make final summation layer contributions accessible from the outside
if self.INTERPR_MODE:
self.presum_layer = out
weighted = out * self.w.squeeze(1) # [batch, seq_len]
padding_positions = ~x1["attention_mask"] # True at padding
# assign learnable pdng to all padding positions
weighted = weighted.masked_fill(padding_positions, self.pdng.item())
# sum across sequence and add bias
result = weighted.sum(dim=1, keepdim=True) + self.b
return result
def train(self, mode = True):
super().train(mode)
self.target_encoder.train(mode)
self.drug_encoder.train(mode)
self.crossattention.train(mode)
return self
def eval(self):
super().eval()
self.target_encoder.eval()
self.drug_encoder.eval()
self.crossattention.eval()
return self
def INTERPR_ENABLE_MODE(self):
"""
Enables the interpretability mode for the model.
"""
if self.training:
raise RuntimeError("Cannot enable interpretability mode while the model is training.")
self.INTERPR_MODE = True
def INTERPR_DISABLE_MODE(self):
"""
Disables the interpretability mode for the model.
"""
if self.training:
raise RuntimeError("Cannot disable interpretability mode while the model is training.")
self.INTERPR_MODE = False
def INTERPR_OVERRIDE_ATTN(self, new_weights):
self.replace_weights = new_weights
def INTERPR_RESET_OVERRIDE_ATTN(self):
self.replace_weights = None
def unscale(self, x):
"""
Unscales the labels using a scaler. If the scaler is not specified, don't do anything.
Parameters:
target_value: the target values to be unscaled
"""
with torch.no_grad():
if self.scaler is None:
return x
unscaled = self.scaler.inverse_transform(x)
return unscaled
|