Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +103 -60
- readme.md +191 -0
- readme_spaces.md +169 -0
app.py
CHANGED
|
@@ -18,7 +18,7 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
def create_placeholder_image(width=
|
| 22 |
"""
|
| 23 |
Create a transparent placeholder image with text
|
| 24 |
|
|
@@ -231,7 +231,6 @@ class DrugTargetInteractionApp:
|
|
| 231 |
logger.info(f"Target attention mask shape: {target_inputs['attention_mask'].shape}")
|
| 232 |
logger.info(f"Drug attention mask shape: {drug_inputs['attention_mask'].shape}")
|
| 233 |
|
| 234 |
-
|
| 235 |
cross_attention_img = plot_crossattention_weights(
|
| 236 |
target_inputs["attention_mask"][0],
|
| 237 |
drug_inputs["attention_mask"][0],
|
|
@@ -389,10 +388,7 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 389 |
lines=2
|
| 390 |
)
|
| 391 |
|
| 392 |
-
|
| 393 |
-
with gr.Row():
|
| 394 |
-
predict_btn = gr.Button("๐ Predict Interaction", variant="primary", size="lg")
|
| 395 |
-
visualize_btn = gr.Button("๐ Visualize Interaction", variant="secondary", size="lg")
|
| 396 |
|
| 397 |
with gr.Column(scale=1):
|
| 398 |
prediction_output = gr.Textbox(
|
|
@@ -401,46 +397,6 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 401 |
lines=3
|
| 402 |
)
|
| 403 |
|
| 404 |
-
# Visualization outputs section
|
| 405 |
-
gr.HTML("<h3 style='margin-top: 30px; color: #2E86AB;'>๐ Interaction Visualizations</h3>")
|
| 406 |
-
|
| 407 |
-
with gr.Row():
|
| 408 |
-
with gr.Column():
|
| 409 |
-
viz_image1 = gr.Image(
|
| 410 |
-
label="Cross-Attention Heatmap",
|
| 411 |
-
type="pil",
|
| 412 |
-
interactive=False,
|
| 413 |
-
container=True,
|
| 414 |
-
height=300,
|
| 415 |
-
value=create_placeholder_image(text="Cross-Attention Heatmap\n(Click Visualize to generate)")
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
with gr.Column():
|
| 419 |
-
viz_image2 = gr.Image(
|
| 420 |
-
label="Raw pKd Contribution Visualization",
|
| 421 |
-
type="pil",
|
| 422 |
-
interactive=False,
|
| 423 |
-
container=True,
|
| 424 |
-
height=300,
|
| 425 |
-
value=create_placeholder_image(text="Raw pKd Contribution\n(Click Visualize to generate)")
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
with gr.Column():
|
| 429 |
-
viz_image3 = gr.Image(
|
| 430 |
-
label="Normalized pKd Contribution Visualization",
|
| 431 |
-
type="pil",
|
| 432 |
-
interactive=False,
|
| 433 |
-
container=True,
|
| 434 |
-
height=300,
|
| 435 |
-
value=create_placeholder_image(text="Normalized pKd Contribution\n(Click Visualize to generate)")
|
| 436 |
-
)
|
| 437 |
-
|
| 438 |
-
viz_status = gr.Textbox(
|
| 439 |
-
label="Visualization Status",
|
| 440 |
-
interactive=False,
|
| 441 |
-
lines=2
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
# Example inputs
|
| 445 |
gr.HTML("<h3 style='margin-top: 20px; color: #2E86AB;'>๐ Example Inputs:</h3>")
|
| 446 |
|
|
@@ -461,18 +417,100 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 461 |
cache_examples=False
|
| 462 |
)
|
| 463 |
|
| 464 |
-
# Button click
|
| 465 |
predict_btn.click(
|
| 466 |
fn=predict_wrapper,
|
| 467 |
inputs=[target_input, drug_input],
|
| 468 |
outputs=prediction_output
|
| 469 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
visualize_btn.click(
|
| 472 |
fn=visualize_wrapper,
|
| 473 |
-
inputs=[
|
| 474 |
outputs=[viz_image1, viz_image2, viz_image3, viz_status]
|
| 475 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
with gr.Tab("โ๏ธ Model Settings"):
|
| 478 |
gr.HTML("<h3 style='color: #2E86AB;'>Model Configuration</h3>")
|
|
@@ -483,7 +521,7 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 483 |
placeholder="Path to model directory"
|
| 484 |
)
|
| 485 |
|
| 486 |
-
load_model_btn = gr.Button("
|
| 487 |
model_status = gr.Textbox(
|
| 488 |
label="Status",
|
| 489 |
interactive=False,
|
|
@@ -502,13 +540,13 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 502 |
|
| 503 |
This application uses a deep learning model for predicting drug-target interactions. The model architecture includes:
|
| 504 |
|
| 505 |
-
- **Target Encoder**: Processes RNA sequences
|
| 506 |
-
- **Drug Encoder**: Processes molecular SMILES notation
|
| 507 |
- **Cross-Attention Mechanism**: Captures interactions between drugs and targets
|
| 508 |
-
- **Regression Head**: Predicts binding affinity scores
|
| 509 |
|
| 510 |
### Input Requirements:
|
| 511 |
-
- **Target Sequence**: RNA sequence of the target
|
| 512 |
- **Drug SMILES**: Simplified Molecular Input Line Entry System notation
|
| 513 |
|
| 514 |
### Model Features:
|
|
@@ -519,16 +557,21 @@ with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()
|
|
| 519 |
|
| 520 |
### Usage Tips:
|
| 521 |
1. Load your trained model using the Model Settings tab
|
| 522 |
-
2. Enter a RNA sequence and drug SMILES
|
| 523 |
-
3. Click "Predict Interaction"
|
| 524 |
-
4. Click "
|
| 525 |
|
| 526 |
-
For best results, ensure your input sequences are properly formatted and within reasonable length limits.
|
| 527 |
|
| 528 |
### Visualization Features:
|
| 529 |
-
- **Cross-Attention Heatmap**: Shows cross-attention between drug and target tokens
|
| 530 |
-
- **Raw pKd Contribution**: Shows raw signed contributions (only when pKd > 0)
|
| 531 |
-
- **Normalized pKd Contribution**: Shows normalized non-negative contributions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
""")
|
| 533 |
|
| 534 |
# Launch the app
|
|
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
+
def create_placeholder_image(width=600, height=400, text="No visualization available", bg_color=(0, 0, 0, 0)):
|
| 22 |
"""
|
| 23 |
Create a transparent placeholder image with text
|
| 24 |
|
|
|
|
| 231 |
logger.info(f"Target attention mask shape: {target_inputs['attention_mask'].shape}")
|
| 232 |
logger.info(f"Drug attention mask shape: {drug_inputs['attention_mask'].shape}")
|
| 233 |
|
|
|
|
| 234 |
cross_attention_img = plot_crossattention_weights(
|
| 235 |
target_inputs["attention_mask"][0],
|
| 236 |
drug_inputs["attention_mask"][0],
|
|
|
|
| 388 |
lines=2
|
| 389 |
)
|
| 390 |
|
| 391 |
+
predict_btn = gr.Button("๐ Predict Interaction", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
with gr.Column(scale=1):
|
| 394 |
prediction_output = gr.Textbox(
|
|
|
|
| 397 |
lines=3
|
| 398 |
)
|
| 399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
# Example inputs
|
| 401 |
gr.HTML("<h3 style='margin-top: 20px; color: #2E86AB;'>๐ Example Inputs:</h3>")
|
| 402 |
|
|
|
|
| 417 |
cache_examples=False
|
| 418 |
)
|
| 419 |
|
| 420 |
+
# Button click event
|
| 421 |
predict_btn.click(
|
| 422 |
fn=predict_wrapper,
|
| 423 |
inputs=[target_input, drug_input],
|
| 424 |
outputs=prediction_output
|
| 425 |
)
|
| 426 |
+
|
| 427 |
+
with gr.Tab("๐ Visualizations"):
|
| 428 |
+
gr.HTML("""
|
| 429 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 430 |
+
<h2 style="color: #2E86AB;">๐ฌ Interaction Analysis & Visualizations</h2>
|
| 431 |
+
<p style="font-size: 1.1em; color: #666;">
|
| 432 |
+
Generate detailed visualizations to understand drug-target interactions
|
| 433 |
+
</p>
|
| 434 |
+
</div>
|
| 435 |
+
""")
|
| 436 |
+
|
| 437 |
+
with gr.Row():
|
| 438 |
+
with gr.Column(scale=1):
|
| 439 |
+
viz_target_input = gr.Textbox(
|
| 440 |
+
label="Target RNA Sequence",
|
| 441 |
+
placeholder="Enter RNA sequence (e.g., AUGCUAGCUAGUACGUA...)",
|
| 442 |
+
lines=4,
|
| 443 |
+
max_lines=6
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
viz_drug_input = gr.Textbox(
|
| 447 |
+
label="Drug SMILES",
|
| 448 |
+
placeholder="Enter SMILES notation (e.g., CC(C)CC1=CC=C(C=C1)C(C)C(=O)O)",
|
| 449 |
+
lines=2
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
visualize_btn = gr.Button("๐ Generate Visualizations", variant="primary", size="lg")
|
| 453 |
+
|
| 454 |
+
viz_status = gr.Textbox(
|
| 455 |
+
label="Visualization Status",
|
| 456 |
+
interactive=False,
|
| 457 |
+
lines=3
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# Visualization outputs - Large and vertically aligned
|
| 461 |
+
gr.HTML("<div style='margin-top: 30px;'></div>")
|
| 462 |
+
|
| 463 |
+
viz_image1 = gr.Image(
|
| 464 |
+
label="Cross-Attention Heatmap",
|
| 465 |
+
type="pil",
|
| 466 |
+
interactive=False,
|
| 467 |
+
container=True,
|
| 468 |
+
height=500,
|
| 469 |
+
value=create_placeholder_image(text="Cross-Attention Heatmap\n(Click Generate Visualizations to create)")
|
| 470 |
+
)
|
| 471 |
|
| 472 |
+
viz_image2 = gr.Image(
|
| 473 |
+
label="Raw pKd Contribution Visualization",
|
| 474 |
+
type="pil",
|
| 475 |
+
interactive=False,
|
| 476 |
+
container=True,
|
| 477 |
+
height=500,
|
| 478 |
+
value=create_placeholder_image(text="Raw pKd Contribution\n(Click Generate Visualizations to create)")
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
viz_image3 = gr.Image(
|
| 482 |
+
label="Normalized pKd Contribution Visualization",
|
| 483 |
+
type="pil",
|
| 484 |
+
interactive=False,
|
| 485 |
+
container=True,
|
| 486 |
+
height=500,
|
| 487 |
+
value=create_placeholder_image(text="Normalized pKd Contribution\n(Click Generate Visualizations to create)")
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
# Button click event for visualizations
|
| 491 |
visualize_btn.click(
|
| 492 |
fn=visualize_wrapper,
|
| 493 |
+
inputs=[viz_target_input, viz_drug_input],
|
| 494 |
outputs=[viz_image1, viz_image2, viz_image3, viz_status]
|
| 495 |
)
|
| 496 |
+
|
| 497 |
+
# Example inputs for visualization tab
|
| 498 |
+
gr.HTML("<h3 style='margin-top: 20px; color: #2E86AB;'>๐ Example Inputs:</h3>")
|
| 499 |
+
|
| 500 |
+
viz_examples = gr.Examples(
|
| 501 |
+
examples=[
|
| 502 |
+
[
|
| 503 |
+
"AUGCUAGCUAGUACGUAUAUCUGCACUGC",
|
| 504 |
+
"CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"
|
| 505 |
+
],
|
| 506 |
+
[
|
| 507 |
+
"AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU",
|
| 508 |
+
"C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2"
|
| 509 |
+
]
|
| 510 |
+
],
|
| 511 |
+
inputs=[viz_target_input, viz_drug_input],
|
| 512 |
+
cache_examples=False
|
| 513 |
+
)
|
| 514 |
|
| 515 |
with gr.Tab("โ๏ธ Model Settings"):
|
| 516 |
gr.HTML("<h3 style='color: #2E86AB;'>Model Configuration</h3>")
|
|
|
|
| 521 |
placeholder="Path to model directory"
|
| 522 |
)
|
| 523 |
|
| 524 |
+
load_model_btn = gr.Button("๐ฅ Load Model", variant="secondary")
|
| 525 |
model_status = gr.Textbox(
|
| 526 |
label="Status",
|
| 527 |
interactive=False,
|
|
|
|
| 540 |
|
| 541 |
This application uses a deep learning model for predicting drug-target interactions. The model architecture includes:
|
| 542 |
|
| 543 |
+
- **Target Encoder**: Processes RNA sequences using RNA-BERTa
|
| 544 |
+
- **Drug Encoder**: Processes molecular SMILES notation using ChemBERTa
|
| 545 |
- **Cross-Attention Mechanism**: Captures interactions between drugs and targets
|
| 546 |
+
- **Regression Head**: Predicts binding affinity scores (pKd values)
|
| 547 |
|
| 548 |
### Input Requirements:
|
| 549 |
+
- **Target Sequence**: RNA sequence of the target (nucleotide sequences: A, U, G, C)
|
| 550 |
- **Drug SMILES**: Simplified Molecular Input Line Entry System notation
|
| 551 |
|
| 552 |
### Model Features:
|
|
|
|
| 557 |
|
| 558 |
### Usage Tips:
|
| 559 |
1. Load your trained model using the Model Settings tab
|
| 560 |
+
2. Enter a RNA sequence and drug SMILES in either the Prediction or Visualization tab
|
| 561 |
+
3. Click "Predict Interaction" for binding affinity prediction only
|
| 562 |
+
4. Click "Generate Visualizations" for detailed interaction analysis with visual interpretations
|
| 563 |
|
| 564 |
+
For best results, ensure your input sequences are properly formatted and within reasonable length limits (max 512 tokens).
|
| 565 |
|
| 566 |
### Visualization Features:
|
| 567 |
+
- **Cross-Attention Heatmap**: Shows cross-attention weights between drug and target tokens
|
| 568 |
+
- **Raw pKd Contribution**: Shows raw signed contributions from each target token (only when pKd > 0)
|
| 569 |
+
- **Normalized pKd Contribution**: Shows normalized non-negative contributions from each target token
|
| 570 |
+
|
| 571 |
+
### Performance Metrics:
|
| 572 |
+
- Training on diverse drug-target interaction datasets
|
| 573 |
+
- Evaluated using RMSE, Pearson correlation, and Concordance Index
|
| 574 |
+
- Optimized for both predictive accuracy and interpretability
|
| 575 |
""")
|
| 576 |
|
| 577 |
# Launch the app
|
readme.md
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Drug-Target Interaction Prediction Model
|
| 2 |
+
|
| 3 |
+
## Model Description
|
| 4 |
+
|
| 5 |
+
This model predicts drug-target interactions using a novel cross-attention architecture that combines RNA sequence understanding with molecular representation learning. The model processes RNA target sequences and drug SMILES representations to predict binding affinity scores (pKd values).
|
| 6 |
+
|
| 7 |
+
## Architecture
|
| 8 |
+
|
| 9 |
+
The model consists of several key components:
|
| 10 |
+
|
| 11 |
+
1. **Target Encoder**: RNA-BERTa model that processes RNA sequences (nucleotides A, U, G, C)
|
| 12 |
+
2. **Drug Encoder**: ChemBERTa-77M-MTR model [1] that processes molecular SMILES representations
|
| 13 |
+
3. **Cross-Attention Layer**: Single-head attention mechanism (1 head) that models interactions between drug and target representations
|
| 14 |
+
4. **Regression Head**: Predicts binding affinity scores with learnable scaling and bias parameters
|
| 15 |
+
|
| 16 |
+
### Technical Specifications
|
| 17 |
+
|
| 18 |
+
- **Model Size**: Combines RNA-BERTa (target encoder) + ChemBERTa-77M-MTR (drug encoder)
|
| 19 |
+
- **Cross-Attention**: Single-head attention with 384-dimensional embeddings
|
| 20 |
+
- **Maximum Sequence Length**: 512 tokens for both target and drug inputs
|
| 21 |
+
- **Output**: Continuous binding affinity prediction (pKd values)
|
| 22 |
+
- **Dropout**: Configurable attention dropout and hidden dropout for regularization
|
| 23 |
+
- **Layer Normalization**: Applied for training stability
|
| 24 |
+
|
| 25 |
+
## Performance Metrics
|
| 26 |
+
|
| 27 |
+
Evaluated on external ROBIN test datasets [2] across different RNA classes:
|
| 28 |
+
|
| 29 |
+
| Dataset | Precision | Specificity | Recall | AUROC | F1 Score |
|
| 30 |
+
|---------|-----------|-------------|---------|-------|----------|
|
| 31 |
+
| Aptamers | 0.648 | 0.002 | 1.000 | 0.571 | 0.787 |
|
| 32 |
+
| Riboswitch | 0.519 | 0.035 | 0.972 | 0.577 | 0.677 |
|
| 33 |
+
| Viral RNA | 0.562 | 0.095 | 0.943 | 0.579 | 0.704 |
|
| 34 |
+
| miRNA | 0.373 | 0.028 | 0.991 | 0.596 | 0.542 |
|
| 35 |
+
|
| 36 |
+
## Usage
|
| 37 |
+
|
| 38 |
+
### Using the Gradio Interface
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
import gradio as gr
|
| 42 |
+
from updated_app import demo
|
| 43 |
+
|
| 44 |
+
# Launch the interactive interface
|
| 45 |
+
demo.launch()
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Programmatic Usage
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
from modeling_dlmberta import InteractionModelATTNForRegression, StdScaler
|
| 52 |
+
from configuration_dlmberta import InteractionModelATTNConfig
|
| 53 |
+
from transformers import AutoModel, RobertaModel, AutoConfig
|
| 54 |
+
from chemberta import ChembertaTokenizer
|
| 55 |
+
|
| 56 |
+
# Load model components
|
| 57 |
+
config = InteractionModelATTNConfig.from_pretrained("path/to/model")
|
| 58 |
+
|
| 59 |
+
# Load encoders
|
| 60 |
+
target_encoder = AutoModel.from_pretrained("IlPakoZ/RNA-BERTa9700")
|
| 61 |
+
drug_encoder_config = AutoConfig.from_pretrained("DeepChem/ChemBERTa-77M-MTR")
|
| 62 |
+
drug_encoder_config.pooler = None
|
| 63 |
+
drug_encoder = RobertaModel(config=drug_encoder_config, add_pooling_layer=False)
|
| 64 |
+
|
| 65 |
+
# Load scaler (if available)
|
| 66 |
+
scaler = StdScaler()
|
| 67 |
+
scaler.load("path/to/model")
|
| 68 |
+
|
| 69 |
+
# Initialize model
|
| 70 |
+
model = InteractionModelATTNForRegression.from_pretrained(
|
| 71 |
+
"path/to/model",
|
| 72 |
+
config=config,
|
| 73 |
+
target_encoder=target_encoder,
|
| 74 |
+
drug_encoder=drug_encoder,
|
| 75 |
+
scaler=scaler
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Make predictions
|
| 79 |
+
target_sequence = "AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU"
|
| 80 |
+
drug_smiles = "C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2"
|
| 81 |
+
|
| 82 |
+
# Tokenize inputs
|
| 83 |
+
target_inputs = target_tokenizer(target_sequence, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
| 84 |
+
drug_inputs = drug_tokenizer(drug_smiles, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
| 85 |
+
|
| 86 |
+
# Predict
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
prediction = model(target_inputs, drug_inputs)
|
| 89 |
+
if model.scaler:
|
| 90 |
+
prediction = model.unscale(prediction)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Model Inputs
|
| 94 |
+
|
| 95 |
+
- **Target Sequence**: RNA sequence using nucleotides A, U, G, C (string)
|
| 96 |
+
- **Drug SMILES**: Simplified Molecular Input Line Entry System notation (string)
|
| 97 |
+
|
| 98 |
+
## Model Outputs
|
| 99 |
+
|
| 100 |
+
- **Binding Affinity**: Predicted pKd binding affinity score (float)
|
| 101 |
+
- **Attention Weights**: Cross-attention weights for interpretability analysis (when enabled)
|
| 102 |
+
|
| 103 |
+
## Interpretability Features
|
| 104 |
+
|
| 105 |
+
The model includes advanced interpretability capabilities:
|
| 106 |
+
|
| 107 |
+
- **Cross-Attention Visualization**: Heatmaps showing interaction patterns between drug and target tokens
|
| 108 |
+
- **Token-Level Contributions**: Visualization of individual token contributions to the final prediction
|
| 109 |
+
- **Raw vs. Normalized Contributions**: Both scaled and unscaled contribution analysis
|
| 110 |
+
- **Interpretation Mode**: Special mode for extracting attention weights and intermediate values
|
| 111 |
+
|
| 112 |
+
### Enabling Interpretation Mode
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
# Enable interpretation mode (evaluation only)
|
| 116 |
+
model.INTERPR_ENABLE_MODE()
|
| 117 |
+
|
| 118 |
+
# Make prediction with interpretation data
|
| 119 |
+
prediction = model(target_inputs, drug_inputs)
|
| 120 |
+
|
| 121 |
+
# Access interpretation data
|
| 122 |
+
cross_attention_weights = model.model.crossattention_weights
|
| 123 |
+
presum_contributions = model.model.presum_layer
|
| 124 |
+
attention_scores = model.model.scores
|
| 125 |
+
|
| 126 |
+
# Disable interpretation mode
|
| 127 |
+
model.INTERPR_DISABLE_MODE()
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
## Training Details
|
| 131 |
+
|
| 132 |
+
### Data Processing
|
| 133 |
+
- **Scaling**: Uses StdScaler for target value normalization
|
| 134 |
+
- **Tokenization**: Separate tokenizers for RNA sequences and SMILES strings
|
| 135 |
+
- **Padding**: Max length padding to 512 tokens
|
| 136 |
+
- **Masking**: Attention masks to handle variable-length sequences
|
| 137 |
+
|
| 138 |
+
### Architecture Details
|
| 139 |
+
- **Embedding Dimension**: 384 for cross-attention layer
|
| 140 |
+
- **Target Encoder Output**: 512 dimensions, mapped to 384
|
| 141 |
+
- **Drug Encoder Output**: 384 dimensions (direct use)
|
| 142 |
+
- **Attention Mechanism**: Single-head cross-attention with scaled dot-product
|
| 143 |
+
- **Learnable Parameters**: Weighted sum with learnable scaling vector and bias
|
| 144 |
+
- **Padding Handling**: Learnable padding value for masked positions
|
| 145 |
+
|
| 146 |
+
## Limitations
|
| 147 |
+
|
| 148 |
+
- Performance varies significantly across RNA classes (miRNA shows lower precision)
|
| 149 |
+
- May not generalize well to RNA sequences or chemical scaffolds not represented in training data
|
| 150 |
+
- Computational requirements scale with sequence length (max 512 tokens)
|
| 151 |
+
- Single attention head may limit capacity to capture diverse interaction patterns
|
| 152 |
+
- SMILES representation may not capture all relevant molecular properties
|
| 153 |
+
|
| 154 |
+
## Files in this Repository
|
| 155 |
+
|
| 156 |
+
- `modeling_dlmberta.py`: Main model implementation with cross-attention architecture
|
| 157 |
+
- `configuration_dlmberta.py`: Model configuration class
|
| 158 |
+
- `chemberta.py`: Custom tokenizer for chemical SMILES processing
|
| 159 |
+
- `updated_app.py`: Gradio application interface with visualization capabilities
|
| 160 |
+
- `analysis.py`: Visualization functions for interpretability
|
| 161 |
+
- `requirements.txt`: Python dependencies
|
| 162 |
+
- `config.json`: Model configuration file
|
| 163 |
+
|
| 164 |
+
## License
|
| 165 |
+
|
| 166 |
+
This model is released under the MIT License.
|
| 167 |
+
|
| 168 |
+
### Citations
|
| 169 |
+
[1]
|
| 170 |
+
```bibtex
|
| 171 |
+
@article{ahmad2022chemberta,
|
| 172 |
+
title={Chemberta-2: Towards chemical foundation models},
|
| 173 |
+
author={Ahmad, Walid and Simon, Elana and Chithrananda, Seyone and Grand, Gabriel and Ramsundar, Bharath},
|
| 174 |
+
journal={arXiv preprint arXiv:2209.01712},
|
| 175 |
+
year={2022}
|
| 176 |
+
}
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
[2]
|
| 180 |
+
```bibtex
|
| 181 |
+
@article{krishnan2024reliable,
|
| 182 |
+
title={Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning},
|
| 183 |
+
author={Krishnan, Sowmya R and Roy, Arijit and Gromiha, M Michael},
|
| 184 |
+
journal={Briefings in Bioinformatics},
|
| 185 |
+
volume={25},
|
| 186 |
+
number={2},
|
| 187 |
+
pages={bbae002},
|
| 188 |
+
year={2024},
|
| 189 |
+
publisher={Oxford University Press}
|
| 190 |
+
}
|
| 191 |
+
```
|
readme_spaces.md
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Drug-Target Interaction Predictor
|
| 3 |
+
emoji: ๐งฌ
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
+
app_file: updated_app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Drug-Target Interaction Predictor
|
| 14 |
+
|
| 15 |
+
An interactive deep learning application for predicting drug-target interactions using a novel cross-attention architecture. This model processes RNA sequences and drug SMILES representations to predict binding affinity scores (pKd values) with interpretability features.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- ๐ฎ **Binding Affinity Prediction**: Input RNA sequences and drug SMILES to get quantitative binding affinity predictions
|
| 20 |
+
- ๐ **Interactive Visualizations**: Generate cross-attention heatmaps and contribution analysis plots
|
| 21 |
+
- ๐งฌ **RNA-Drug Interaction Analysis**: Understand how different tokens contribute to binding predictions
|
| 22 |
+
- โ๏ธ **Model Management**: Load and configure different model checkpoints
|
| 23 |
+
- ๐ฏ **Interpretability Tools**: Visualize attention weights and token-level contributions
|
| 24 |
+
- ๐ **Performance Metrics**: Evaluated on multiple RNA classes (Aptamers, Riboswitches, Viral RNA, miRNA)
|
| 25 |
+
|
| 26 |
+
## How to Use
|
| 27 |
+
|
| 28 |
+
### 1. Prediction Tab
|
| 29 |
+
- **Load Model**: The model loads automatically on startup (if available in the current directory)
|
| 30 |
+
- **Enter Inputs**:
|
| 31 |
+
- Target RNA sequence (nucleotides: A, U, G, C)
|
| 32 |
+
- Drug SMILES string (molecular representation)
|
| 33 |
+
- **Get Results**: Click "Predict Interaction" to receive binding affinity prediction (pKd value)
|
| 34 |
+
|
| 35 |
+
### 2. Visualizations Tab
|
| 36 |
+
- **Generate Analysis**: Use the same inputs to create detailed visualizations
|
| 37 |
+
- **Cross-Attention Heatmap**: Shows interaction patterns between drug and target tokens
|
| 38 |
+
- **Raw pKd Contribution**: Displays signed contributions from each target token (only when pKd > 0)
|
| 39 |
+
- **Normalized pKd Contribution**: Shows normalized contributions for all predictions
|
| 40 |
+
|
| 41 |
+
### 3. Model Settings Tab
|
| 42 |
+
- **Custom Models**: Load your own trained models by specifying the model directory path
|
| 43 |
+
- **Status Monitoring**: Check model loading status and configuration
|
| 44 |
+
|
| 45 |
+
## Model Architecture
|
| 46 |
+
|
| 47 |
+
The model combines state-of-the-art language models with cross-attention mechanisms:
|
| 48 |
+
|
| 49 |
+
- **Target Encoder**: RNA-BERTa model for processing RNA sequences
|
| 50 |
+
- **Drug Encoder**: ChemBERTa-77M-MTR model [1] for molecular SMILES processing
|
| 51 |
+
- **Cross-Attention**: Single-head attention mechanism (384-dimensional embeddings)
|
| 52 |
+
- **Regression Head**: Learnable weighted sum with scaling and bias parameters
|
| 53 |
+
- **Interpretability**: Built-in interpretation mode for attention analysis
|
| 54 |
+
|
| 55 |
+
## Performance on ROBIN Test Datasets
|
| 56 |
+
|
| 57 |
+
Evaluated on external ROBIN test datasets [2] across different RNA classes:
|
| 58 |
+
|
| 59 |
+
| RNA Class | Precision | Specificity | Recall | AUROC | F1 Score |
|
| 60 |
+
|-----------|-----------|-------------|---------|-------|----------|
|
| 61 |
+
| Aptamers | 0.648 | 0.002 | 1.000 | 0.571 | 0.787 |
|
| 62 |
+
| Riboswitch | 0.519 | 0.035 | 0.972 | 0.577 | 0.677 |
|
| 63 |
+
| Viral RNA | 0.562 | 0.095 | 0.943 | 0.579 | 0.704 |
|
| 64 |
+
| miRNA | 0.373 | 0.028 | 0.991 | 0.596 | 0.542 |
|
| 65 |
+
|
| 66 |
+
## Example Usage
|
| 67 |
+
|
| 68 |
+
Try these example inputs to see the model in action:
|
| 69 |
+
|
| 70 |
+
**Example 1:**
|
| 71 |
+
- **Target**: `AUGCUAGCUAGUACGUAUAUCUGCACUGC`
|
| 72 |
+
- **Drug**: `CC(C)CC1=CC=C(C=C1)C(C)C(=O)O`
|
| 73 |
+
|
| 74 |
+
**Example 2:**
|
| 75 |
+
- **Target**: `AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU`
|
| 76 |
+
- **Drug**: `C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2`
|
| 77 |
+
|
| 78 |
+
## Input Format Requirements
|
| 79 |
+
|
| 80 |
+
- **Target Sequence**:
|
| 81 |
+
- RNA sequences using nucleotides A, U, G, C
|
| 82 |
+
- Maximum length: 512 tokens
|
| 83 |
+
- Automatically truncated/padded as needed
|
| 84 |
+
|
| 85 |
+
- **Drug SMILES**:
|
| 86 |
+
- Standard SMILES notation for molecular structures
|
| 87 |
+
- Maximum length: 512 tokens
|
| 88 |
+
- Example: `CC(C)CC1=CC=C(C=C1)C(C)C(=O)O` (Ibuprofen)
|
| 89 |
+
|
| 90 |
+
## Technical Specifications
|
| 91 |
+
|
| 92 |
+
- **Model Size**: RNA-BERTa + ChemBERTa-77M-MTR backbone
|
| 93 |
+
- **Attention Heads**: 1 (single-head cross-attention)
|
| 94 |
+
- **Embedding Dimension**: 384 for cross-attention layer
|
| 95 |
+
- **Maximum Sequence Length**: 512 tokens for both inputs
|
| 96 |
+
- **Output Range**: Continuous pKd values (can be negative)
|
| 97 |
+
- **Scaling**: Built-in StdScaler for target value normalization
|
| 98 |
+
|
| 99 |
+
## Visualization Features
|
| 100 |
+
|
| 101 |
+
### Cross-Attention Heatmap
|
| 102 |
+
- Displays attention weights between drug and target tokens
|
| 103 |
+
- Helps identify which molecular features interact with specific RNA regions
|
| 104 |
+
- Color intensity represents attention strength
|
| 105 |
+
|
| 106 |
+
### Contribution Analysis
|
| 107 |
+
- **Raw Contributions**: Signed values showing positive/negative token impacts (only for pKd > 0)
|
| 108 |
+
- **Normalized Contributions**: Non-negative values showing relative token importance
|
| 109 |
+
- Token-level breakdown of final prediction components
|
| 110 |
+
|
| 111 |
+
## Limitations & Considerations
|
| 112 |
+
|
| 113 |
+
- **RNA Class Variation**: Performance differs across RNA types (miRNA shows lower precision)
|
| 114 |
+
- **Novel Sequences**: May not generalize well to completely unseen RNA families or chemical scaffolds
|
| 115 |
+
- **Sequence Length**: Limited to 512 tokens (longer sequences are truncated)
|
| 116 |
+
- **SMILES Limitations**: May not capture all 3D molecular properties
|
| 117 |
+
- **Single Attention Head**: May limit capacity for complex interaction patterns
|
| 118 |
+
|
| 119 |
+
## Scientific Applications
|
| 120 |
+
|
| 121 |
+
This tool can be used for:
|
| 122 |
+
- Drug discovery and design
|
| 123 |
+
- RNA-targeted therapeutics research
|
| 124 |
+
- Molecular interaction analysis
|
| 125 |
+
- Binding affinity prediction
|
| 126 |
+
- Structure-activity relationship studies
|
| 127 |
+
- Lead compound optimization
|
| 128 |
+
|
| 129 |
+
## Technical Support
|
| 130 |
+
|
| 131 |
+
For technical issues or questions:
|
| 132 |
+
- Check model loading status in the Model Settings tab
|
| 133 |
+
- Ensure input sequences are properly formatted
|
| 134 |
+
- Verify SMILES notation validity
|
| 135 |
+
- Review example inputs for correct format
|
| 136 |
+
|
| 137 |
+
## Data Sources
|
| 138 |
+
|
| 139 |
+
The model leverages:
|
| 140 |
+
- **RNA-BERTa**: Pre-trained on diverse RNA sequences
|
| 141 |
+
- **ChemBERTa-77M-MTR**: Trained on molecular property prediction tasks [1]
|
| 142 |
+
- **ROBIN Datasets**: External validation across multiple RNA classes [2]
|
| 143 |
+
|
| 144 |
+
For more detailed technical documentation, model architecture details, and programmatic usage, visit the [model repository](https://huggingface.co/IlPakoZ/DLRNA-BERTa9700).
|
| 145 |
+
|
| 146 |
+
### Citations
|
| 147 |
+
[1]
|
| 148 |
+
```bibtex
|
| 149 |
+
@article{ahmad2022chemberta,
|
| 150 |
+
title={Chemberta-2: Towards chemical foundation models},
|
| 151 |
+
author={Ahmad, Walid and Simon, Elana and Chithrananda, Seyone and Grand, Gabriel and Ramsundar, Bharath},
|
| 152 |
+
journal={arXiv preprint arXiv:2209.01712},
|
| 153 |
+
year={2022}
|
| 154 |
+
}
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
[2]
|
| 158 |
+
```bibtex
|
| 159 |
+
@article{krishnan2024reliable,
|
| 160 |
+
title={Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning},
|
| 161 |
+
author={Krishnan, Sowmya R and Roy, Arijit and Gromiha, M Michael},
|
| 162 |
+
journal={Briefings in Bioinformatics},
|
| 163 |
+
volume={25},
|
| 164 |
+
number={2},
|
| 165 |
+
pages={bbae002},
|
| 166 |
+
year={2024},
|
| 167 |
+
publisher={Oxford University Press}
|
| 168 |
+
}
|
| 169 |
+
```
|