Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig, RobertaModel
|
| 5 |
+
from modeling_dlmberta import InteractionModelATTNForRegression, StdScaler
|
| 6 |
+
from configuration_dlmberta import InteractionModelATTNConfig
|
| 7 |
+
from chemberta import ChembertaTokenizer
|
| 8 |
+
import json
|
| 9 |
+
import os
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
# Import visualization functions
|
| 14 |
+
from analysis import plot_crossattention_weights, plot_presum
|
| 15 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
+
|
| 17 |
+
# Configure logging
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
def create_placeholder_image(width=600, height=400, text="No visualization available", bg_color=(0, 0, 0, 0)):
|
| 22 |
+
"""
|
| 23 |
+
Create a transparent placeholder image with text
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
width (int): Image width
|
| 27 |
+
height (int): Image height
|
| 28 |
+
text (str): Text to display
|
| 29 |
+
bg_color (tuple): Background color (R, G, B, A) - (0,0,0,0) for transparent
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
PIL.Image: Transparent placeholder image
|
| 33 |
+
"""
|
| 34 |
+
# Create image with transparent background
|
| 35 |
+
img = Image.new('RGBA', (width, height), bg_color)
|
| 36 |
+
draw = ImageDraw.Draw(img)
|
| 37 |
+
|
| 38 |
+
# Try to use a default font, fallback to default if not available
|
| 39 |
+
try:
|
| 40 |
+
font = ImageFont.truetype("arial.ttf", 16)
|
| 41 |
+
except:
|
| 42 |
+
try:
|
| 43 |
+
font = ImageFont.load_default()
|
| 44 |
+
except:
|
| 45 |
+
font = None
|
| 46 |
+
|
| 47 |
+
# Get text size and position for centering
|
| 48 |
+
if font:
|
| 49 |
+
bbox = draw.textbbox((0, 0), text, font=font)
|
| 50 |
+
text_width = bbox[2] - bbox[0]
|
| 51 |
+
text_height = bbox[3] - bbox[1]
|
| 52 |
+
else:
|
| 53 |
+
# Rough estimation if no font available
|
| 54 |
+
text_width = len(text) * 8
|
| 55 |
+
text_height = 16
|
| 56 |
+
|
| 57 |
+
x = (width - text_width) // 2
|
| 58 |
+
y = (height - text_height) // 2
|
| 59 |
+
|
| 60 |
+
# Draw text in gray
|
| 61 |
+
draw.text((x, y), text, fill=(128, 128, 128, 255), font=font)
|
| 62 |
+
|
| 63 |
+
return img
|
| 64 |
+
|
| 65 |
+
class DrugTargetInteractionApp:
|
| 66 |
+
def __init__(self):
|
| 67 |
+
self.model = None
|
| 68 |
+
self.target_tokenizer = None
|
| 69 |
+
self.drug_tokenizer = None
|
| 70 |
+
self.scaler = None
|
| 71 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 72 |
+
|
| 73 |
+
def load_model(self, model_path="./"):
|
| 74 |
+
"""Load the pre-trained model and tokenizers"""
|
| 75 |
+
try:
|
| 76 |
+
# Load configuration
|
| 77 |
+
config = InteractionModelATTNConfig.from_pretrained(model_path)
|
| 78 |
+
|
| 79 |
+
# Load drug encoder (ChemBERTa)
|
| 80 |
+
drug_encoder_config = AutoConfig.from_pretrained("DeepChem/ChemBERTa-77M-MTR")
|
| 81 |
+
drug_encoder_config.pooler = None
|
| 82 |
+
drug_encoder = RobertaModel(config=drug_encoder_config, add_pooling_layer=False)
|
| 83 |
+
|
| 84 |
+
# Load target encoder
|
| 85 |
+
target_encoder = AutoModel.from_pretrained("IlPakoZ/RNA-BERTa9700")
|
| 86 |
+
|
| 87 |
+
# Load scaler if exists
|
| 88 |
+
scaler_path = os.path.join(model_path, "scaler.config")
|
| 89 |
+
scaler = None
|
| 90 |
+
if os.path.exists(scaler_path):
|
| 91 |
+
scaler = StdScaler()
|
| 92 |
+
scaler.load(model_path)
|
| 93 |
+
|
| 94 |
+
self.model = InteractionModelATTNForRegression.from_pretrained(
|
| 95 |
+
model_path,
|
| 96 |
+
config=config,
|
| 97 |
+
target_encoder=target_encoder,
|
| 98 |
+
drug_encoder=drug_encoder,
|
| 99 |
+
scaler=scaler
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.model.to(self.device)
|
| 103 |
+
self.model.eval()
|
| 104 |
+
|
| 105 |
+
# Load tokenizers
|
| 106 |
+
self.target_tokenizer = AutoTokenizer.from_pretrained(
|
| 107 |
+
os.path.join(model_path, "target_tokenizer")
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Load drug tokenizer (ChemBERTa)
|
| 111 |
+
vocab_file = os.path.join(model_path, "drug_tokenizer", "vocab.json")
|
| 112 |
+
self.drug_tokenizer = ChembertaTokenizer(vocab_file)
|
| 113 |
+
|
| 114 |
+
logger.info("Model and tokenizers loaded successfully!")
|
| 115 |
+
return True
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"Error loading model: {str(e)}")
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
def predict_interaction(self, target_sequence, drug_smiles, max_length=512):
|
| 122 |
+
"""Predict drug-target interaction"""
|
| 123 |
+
if self.model is None:
|
| 124 |
+
return "Error: Model not loaded. Please load a model first."
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
# Tokenize inputs
|
| 128 |
+
target_inputs = self.target_tokenizer(
|
| 129 |
+
target_sequence,
|
| 130 |
+
padding="max_length",
|
| 131 |
+
truncation=True,
|
| 132 |
+
max_length=512,
|
| 133 |
+
return_tensors="pt"
|
| 134 |
+
).to(self.device)
|
| 135 |
+
|
| 136 |
+
drug_inputs = self.drug_tokenizer(
|
| 137 |
+
drug_smiles,
|
| 138 |
+
padding="max_length",
|
| 139 |
+
truncation=True,
|
| 140 |
+
max_length=512,
|
| 141 |
+
return_tensors="pt"
|
| 142 |
+
).to(self.device)
|
| 143 |
+
|
| 144 |
+
# Make prediction
|
| 145 |
+
self.model.INTERPR_DISABLE_MODE()
|
| 146 |
+
with torch.no_grad():
|
| 147 |
+
prediction = self.model(target_inputs, drug_inputs)
|
| 148 |
+
|
| 149 |
+
# Unscale if scaler exists
|
| 150 |
+
if self.model.scaler is not None:
|
| 151 |
+
prediction = self.model.unscale(prediction)
|
| 152 |
+
|
| 153 |
+
prediction_value = prediction.cpu().numpy()[0][0]
|
| 154 |
+
|
| 155 |
+
return f"Predicted Binding Affinity: {prediction_value:.4f}"
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Prediction error: {str(e)}")
|
| 159 |
+
return f"Error during prediction: {str(e)}"
|
| 160 |
+
|
| 161 |
+
def visualize_interaction(self, target_sequence, drug_smiles):
|
| 162 |
+
"""
|
| 163 |
+
Generate visualization images for drug-target interaction
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
target_sequence (str): RNA sequence
|
| 167 |
+
drug_smiles (str): Drug SMILES notation
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
tuple: (cross_attention_image, raw_contribution_image, normalized_contribution_image, status_message)
|
| 171 |
+
"""
|
| 172 |
+
if self.model is None:
|
| 173 |
+
return None, None, None, "Error: Model not loaded. Please load a model first."
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
# Tokenize inputs
|
| 177 |
+
target_inputs = self.target_tokenizer(
|
| 178 |
+
target_sequence,
|
| 179 |
+
padding="max_length",
|
| 180 |
+
truncation=True,
|
| 181 |
+
max_length=512,
|
| 182 |
+
return_tensors="pt"
|
| 183 |
+
).to(self.device)
|
| 184 |
+
|
| 185 |
+
drug_inputs = self.drug_tokenizer(
|
| 186 |
+
drug_smiles,
|
| 187 |
+
padding="max_length",
|
| 188 |
+
truncation=True,
|
| 189 |
+
max_length=512,
|
| 190 |
+
return_tensors="pt"
|
| 191 |
+
).to(self.device)
|
| 192 |
+
|
| 193 |
+
# Enable interpretation mode
|
| 194 |
+
self.model.INTERPR_ENABLE_MODE()
|
| 195 |
+
|
| 196 |
+
# Make prediction and extract visualization data
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
prediction = self.model(target_inputs, drug_inputs)
|
| 199 |
+
|
| 200 |
+
# Unscale if scaler exists
|
| 201 |
+
if self.model.scaler is not None:
|
| 202 |
+
prediction = self.model.unscale(prediction)
|
| 203 |
+
|
| 204 |
+
prediction_value = prediction.cpu().numpy()[0][0]
|
| 205 |
+
|
| 206 |
+
# Extract data needed for visualizations
|
| 207 |
+
presum_values = self.model.model.presum_layer # Shape: (1, seq_len)
|
| 208 |
+
cross_attention_weights = self.model.model.crossattention_weights # Shape: (batch, heads, seq_len, seq_len)
|
| 209 |
+
|
| 210 |
+
# Get model parameters for scaling
|
| 211 |
+
w = self.model.model.w.squeeze(1)
|
| 212 |
+
b = self.model.model.b
|
| 213 |
+
scaler = self.model.model.scaler
|
| 214 |
+
|
| 215 |
+
logger.info(f"Target inputs shape: {target_inputs['input_ids'].shape}")
|
| 216 |
+
logger.info(f"Drug inputs shape: {drug_inputs['input_ids'].shape}")
|
| 217 |
+
|
| 218 |
+
# Generate visualizations
|
| 219 |
+
try:
|
| 220 |
+
# 1. Cross-attention heatmap
|
| 221 |
+
cross_attention_img = None
|
| 222 |
+
logger.info(f"Cross-attention weights type: {type(cross_attention_weights)}")
|
| 223 |
+
if cross_attention_weights is not None:
|
| 224 |
+
logger.info(f"Cross-attention weights shape: {cross_attention_weights.shape if hasattr(cross_attention_weights, 'shape') else 'No shape attr'}")
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
cross_attn_matrix = cross_attention_weights[0, 0]
|
| 228 |
+
|
| 229 |
+
if cross_attn_matrix is not None:
|
| 230 |
+
logger.info(f"Extracted cross-attention matrix shape: {cross_attn_matrix.shape}")
|
| 231 |
+
logger.info(f"Target attention mask shape: {target_inputs['attention_mask'].shape}")
|
| 232 |
+
logger.info(f"Drug attention mask shape: {drug_inputs['attention_mask'].shape}")
|
| 233 |
+
|
| 234 |
+
cross_attention_img = plot_crossattention_weights(
|
| 235 |
+
target_inputs["attention_mask"][0],
|
| 236 |
+
drug_inputs["attention_mask"][0],
|
| 237 |
+
target_inputs,
|
| 238 |
+
drug_inputs,
|
| 239 |
+
cross_attn_matrix,
|
| 240 |
+
self.target_tokenizer,
|
| 241 |
+
self.drug_tokenizer
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
logger.warning("Could not extract valid cross-attention matrix")
|
| 245 |
+
|
| 246 |
+
except (IndexError, TypeError, AttributeError) as e:
|
| 247 |
+
logger.warning(f"Error extracting cross-attention matrix: {str(e)}")
|
| 248 |
+
cross_attn_matrix = None
|
| 249 |
+
else:
|
| 250 |
+
logger.warning("Cross-attention weights are None")
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"Cross-attention visualization error: {str(e)}")
|
| 254 |
+
cross_attention_img = None
|
| 255 |
+
|
| 256 |
+
try:
|
| 257 |
+
# 2. Normalized contribution visualization (only if pKd > 0)
|
| 258 |
+
normalized_img = None
|
| 259 |
+
if presum_values is not None:
|
| 260 |
+
normalized_img = plot_presum(
|
| 261 |
+
target_inputs,
|
| 262 |
+
presum_values.detach(), # Detach the tensor
|
| 263 |
+
scaler,
|
| 264 |
+
w.detach(), # Detach the tensor
|
| 265 |
+
b.detach(), # Detach the tensor
|
| 266 |
+
self.target_tokenizer,
|
| 267 |
+
raw_affinities=False
|
| 268 |
+
)
|
| 269 |
+
else:
|
| 270 |
+
if prediction_value <= 0:
|
| 271 |
+
logger.info("Skipping normalized affinities visualization as pKd <= 0")
|
| 272 |
+
if presum_values is None:
|
| 273 |
+
logger.warning("Cannot generate raw visualization: presum values are None")
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
except Exception as e:
|
| 277 |
+
logger.error(f"Normalized contribution visualization error: {str(e)}")
|
| 278 |
+
normalized_img = None
|
| 279 |
+
|
| 280 |
+
try:
|
| 281 |
+
# 3. Raw contribution visualization (always generate)
|
| 282 |
+
raw_img = None
|
| 283 |
+
if prediction_value > 0 and presum_values is not None:
|
| 284 |
+
raw_img = plot_presum(
|
| 285 |
+
target_inputs,
|
| 286 |
+
presum_values.detach(), # Detach the tensor
|
| 287 |
+
scaler,
|
| 288 |
+
w.detach(), # Detach the tensor
|
| 289 |
+
b.detach(), # Detach the tensor
|
| 290 |
+
self.target_tokenizer,
|
| 291 |
+
raw_affinities=True
|
| 292 |
+
)
|
| 293 |
+
else:
|
| 294 |
+
logger.warning("Presum values are None")
|
| 295 |
+
|
| 296 |
+
except Exception as e:
|
| 297 |
+
logger.error(f"Raw contribution visualization error: {str(e)}")
|
| 298 |
+
raw_img = None
|
| 299 |
+
|
| 300 |
+
# Disable interpretation mode after use
|
| 301 |
+
self.model.INTERPR_DISABLE_MODE()
|
| 302 |
+
|
| 303 |
+
# Create placeholder images if generation failed
|
| 304 |
+
if cross_attention_img is None:
|
| 305 |
+
cross_attention_img = create_placeholder_image(
|
| 306 |
+
text="Cross-Attention Heatmap\nFailed to generate"
|
| 307 |
+
)
|
| 308 |
+
if normalized_img is None:
|
| 309 |
+
normalized_img = create_placeholder_image(
|
| 310 |
+
text="Normalized Contribution\nFailed to generate"
|
| 311 |
+
)
|
| 312 |
+
if raw_img is None and prediction_value > 0:
|
| 313 |
+
raw_img = create_placeholder_image(
|
| 314 |
+
text="Raw Contribution\nFailed to generate"
|
| 315 |
+
)
|
| 316 |
+
elif raw_img is None:
|
| 317 |
+
raw_img = create_placeholder_image(
|
| 318 |
+
text="Raw Contribution\nSkipped (pKd ≤ 0)"
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
status_msg = f"Predicted Binding Affinity: {prediction_value:.4f}"
|
| 322 |
+
if prediction_value <= 0:
|
| 323 |
+
status_msg += " (Raw contribution visualization skipped due to non-positive pKd)"
|
| 324 |
+
if cross_attention_weights is None:
|
| 325 |
+
status_msg += " (Cross-attention visualization failed: weights not available)"
|
| 326 |
+
|
| 327 |
+
return cross_attention_img, raw_img, normalized_img, status_msg
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
logger.error(f"Visualization error: {str(e)}")
|
| 331 |
+
# Make sure to disable interpretation mode even if there's an error
|
| 332 |
+
try:
|
| 333 |
+
self.model.INTERPR_DISABLE_MODE()
|
| 334 |
+
except:
|
| 335 |
+
pass
|
| 336 |
+
return None, None, None, f"Error during visualization: {str(e)}"
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# Initialize the app
|
| 340 |
+
app = DrugTargetInteractionApp()
|
| 341 |
+
|
| 342 |
+
def predict_wrapper(target_seq, drug_smiles):
|
| 343 |
+
"""Wrapper function for Gradio interface"""
|
| 344 |
+
if not target_seq.strip() or not drug_smiles.strip():
|
| 345 |
+
return "Please provide both target sequence and drug SMILES."
|
| 346 |
+
|
| 347 |
+
return app.predict_interaction(target_seq, drug_smiles)
|
| 348 |
+
|
| 349 |
+
def visualize_wrapper(target_seq, drug_smiles):
|
| 350 |
+
"""Wrapper function for visualization"""
|
| 351 |
+
if not target_seq.strip() or not drug_smiles.strip():
|
| 352 |
+
return None, None, None, "Please provide both target sequence and drug SMILES."
|
| 353 |
+
|
| 354 |
+
return app.visualize_interaction(target_seq, drug_smiles)
|
| 355 |
+
|
| 356 |
+
def load_model_wrapper(model_path):
|
| 357 |
+
"""Wrapper function to load model"""
|
| 358 |
+
if app.load_model(model_path):
|
| 359 |
+
return "Model loaded successfully!"
|
| 360 |
+
else:
|
| 361 |
+
return "Failed to load model. Check the path and files."
|
| 362 |
+
|
| 363 |
+
# Create Gradio interface
|
| 364 |
+
with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()) as demo:
|
| 365 |
+
gr.HTML("""
|
| 366 |
+
<div style="text-align: center; margin-bottom: 30px;">
|
| 367 |
+
<h1 style="color: #2E86AB; font-size: 2.5em; margin-bottom: 10px;">
|
| 368 |
+
🧬 Drug-Target Interaction Predictor
|
| 369 |
+
</h1>
|
| 370 |
+
<p style="font-size: 1.2em; color: #666;">
|
| 371 |
+
Predict binding affinity between drugs and target RNA sequences using deep learning
|
| 372 |
+
</p>
|
| 373 |
+
</div>
|
| 374 |
+
""")
|
| 375 |
+
|
| 376 |
+
# Create state variables to share images between tabs
|
| 377 |
+
viz_state1 = gr.State()
|
| 378 |
+
viz_state2 = gr.State()
|
| 379 |
+
viz_state3 = gr.State()
|
| 380 |
+
|
| 381 |
+
with gr.Tab("🔮 Prediction & Analysis"):
|
| 382 |
+
with gr.Row():
|
| 383 |
+
with gr.Column(scale=1):
|
| 384 |
+
target_input = gr.Textbox(
|
| 385 |
+
label="Target RNA Sequence",
|
| 386 |
+
placeholder="Enter RNA sequence (e.g., AUGCUAGCUAGUACGUA...)",
|
| 387 |
+
lines=4,
|
| 388 |
+
max_lines=6
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
drug_input = gr.Textbox(
|
| 392 |
+
label="Drug SMILES",
|
| 393 |
+
placeholder="Enter SMILES notation (e.g., CC(C)CC1=CC=C(C=C1)C(C)C(=O)O)",
|
| 394 |
+
lines=2
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with gr.Row():
|
| 398 |
+
predict_btn = gr.Button("🚀 Predict Interaction", variant="primary", size="lg")
|
| 399 |
+
visualize_btn = gr.Button("📊 Generate Visualizations", variant="secondary", size="lg")
|
| 400 |
+
|
| 401 |
+
with gr.Column(scale=1):
|
| 402 |
+
prediction_output = gr.Textbox(
|
| 403 |
+
label="Prediction Result",
|
| 404 |
+
interactive=False,
|
| 405 |
+
lines=4
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
# Example inputs
|
| 409 |
+
gr.HTML("<h3 style='margin-top: 20px; color: #2E86AB;'>📚 Example Inputs:</h3>")
|
| 410 |
+
|
| 411 |
+
examples = gr.Examples(
|
| 412 |
+
examples=[
|
| 413 |
+
[
|
| 414 |
+
"AUGCUAGCUAGUACGUAUAUCUGCACUGC",
|
| 415 |
+
"CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"
|
| 416 |
+
],
|
| 417 |
+
[
|
| 418 |
+
"AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU",
|
| 419 |
+
"C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2"
|
| 420 |
+
]
|
| 421 |
+
],
|
| 422 |
+
inputs=[target_input, drug_input],
|
| 423 |
+
outputs=prediction_output,
|
| 424 |
+
fn=predict_wrapper,
|
| 425 |
+
cache_examples=False
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# Button click events
|
| 429 |
+
predict_btn.click(
|
| 430 |
+
fn=predict_wrapper,
|
| 431 |
+
inputs=[target_input, drug_input],
|
| 432 |
+
outputs=prediction_output
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
def visualize_and_update(target_seq, drug_smiles):
|
| 436 |
+
"""Generate visualizations and update both status and state"""
|
| 437 |
+
img1, img2, img3, status = visualize_wrapper(target_seq, drug_smiles)
|
| 438 |
+
# Combine prediction result with visualization status
|
| 439 |
+
combined_status = status + "\n\nVisualization analysis complete. Please navigate to the Visualizations tab to view the generated images."
|
| 440 |
+
return img1, img2, img3, combined_status
|
| 441 |
+
|
| 442 |
+
visualize_btn.click(
|
| 443 |
+
fn=visualize_and_update,
|
| 444 |
+
inputs=[target_input, drug_input],
|
| 445 |
+
outputs=[viz_state1, viz_state2, viz_state3, prediction_output]
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
with gr.Tab("📊 Visualizations"):
|
| 449 |
+
gr.HTML("""
|
| 450 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 451 |
+
<h2 style="color: #2E86AB;">🔬 Interaction Analysis & Visualizations</h2>
|
| 452 |
+
<p style="font-size: 1.1em; color: #666;">
|
| 453 |
+
Generated visualizations will appear here after clicking "Generate Visualizations" in the Prediction tab
|
| 454 |
+
</p>
|
| 455 |
+
</div>
|
| 456 |
+
""")
|
| 457 |
+
|
| 458 |
+
# Visualization outputs - Large and vertically aligned
|
| 459 |
+
viz_image1 = gr.Image(
|
| 460 |
+
label="Cross-Attention Heatmap",
|
| 461 |
+
type="pil",
|
| 462 |
+
interactive=False,
|
| 463 |
+
container=True,
|
| 464 |
+
height=500,
|
| 465 |
+
value=create_placeholder_image(text="Cross-Attention Heatmap\n(Generate visualizations in the Prediction tab)")
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
viz_image2 = gr.Image(
|
| 469 |
+
label="Raw pKd Contribution Visualization",
|
| 470 |
+
type="pil",
|
| 471 |
+
interactive=False,
|
| 472 |
+
container=True,
|
| 473 |
+
height=500,
|
| 474 |
+
value=create_placeholder_image(text="Raw pKd Contribution\n(Generate visualizations in the Prediction tab)")
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
viz_image3 = gr.Image(
|
| 478 |
+
label="Normalized pKd Contribution Visualization",
|
| 479 |
+
type="pil",
|
| 480 |
+
interactive=False,
|
| 481 |
+
container=True,
|
| 482 |
+
height=500,
|
| 483 |
+
value=create_placeholder_image(text="Normalized pKd Contribution\n(Generate visualizations in the Prediction tab)")
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
# Update visualization images when state changes
|
| 487 |
+
viz_state1.change(
|
| 488 |
+
fn=lambda x: x,
|
| 489 |
+
inputs=viz_state1,
|
| 490 |
+
outputs=viz_image1
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
viz_state2.change(
|
| 494 |
+
fn=lambda x: x,
|
| 495 |
+
inputs=viz_state2,
|
| 496 |
+
outputs=viz_image2
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
viz_state3.change(
|
| 500 |
+
fn=lambda x: x,
|
| 501 |
+
inputs=viz_state3,
|
| 502 |
+
outputs=viz_image3
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
with gr.Tab("⚙️ Model Settings"):
|
| 506 |
+
gr.HTML("<h3 style='color: #2E86AB;'>Model Configuration</h3>")
|
| 507 |
+
|
| 508 |
+
model_path_input = gr.Textbox(
|
| 509 |
+
label="Model Path",
|
| 510 |
+
value="./",
|
| 511 |
+
placeholder="Path to model directory"
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
load_model_btn = gr.Button("📥 Load Model", variant="secondary")
|
| 515 |
+
model_status = gr.Textbox(
|
| 516 |
+
label="Status",
|
| 517 |
+
interactive=False,
|
| 518 |
+
value="No model loaded"
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
load_model_btn.click(
|
| 522 |
+
fn=load_model_wrapper,
|
| 523 |
+
inputs=model_path_input,
|
| 524 |
+
outputs=model_status
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
with gr.Tab("📊 Dataset"):
|
| 528 |
+
gr.Markdown("""
|
| 529 |
+
## Training and Test Datasets
|
| 530 |
+
|
| 531 |
+
### Fine-tuning Dataset (Training)
|
| 532 |
+
|
| 533 |
+
The model was trained on a dataset comprising **1,439 RNA–drug interaction pairs**, including:
|
| 534 |
+
- **759 unique compounds** (SMILES representations)
|
| 535 |
+
- **294 unique RNA sequences**
|
| 536 |
+
- Dissociation constants (pKd values) for binding affinity prediction
|
| 537 |
+
|
| 538 |
+
**RNA Sequence Distribution by Type:**
|
| 539 |
+
|
| 540 |
+
| RNA Sequence Type | Number of Interactions |
|
| 541 |
+
|-------------------|------------------------|
|
| 542 |
+
| Aptamers | 520 |
|
| 543 |
+
| Ribosomal | 295 |
|
| 544 |
+
| Viral RNAs | 281 |
|
| 545 |
+
| miRNAs | 146 |
|
| 546 |
+
| Riboswitches | 100 |
|
| 547 |
+
| Repeats | 97 |
|
| 548 |
+
| **Total** | **1,439** |
|
| 549 |
+
|
| 550 |
+
### External Evaluation Dataset (Test)
|
| 551 |
+
|
| 552 |
+
Model validation was performed using external ROBIN classification datasets containing **5,534 RNA–drug pairs**:
|
| 553 |
+
- **2,991 positive interactions**
|
| 554 |
+
- **2,538 negative interactions**
|
| 555 |
+
|
| 556 |
+
**Test Dataset Composition:**
|
| 557 |
+
- **1,617 aptamer pairs** (5 unique RNA sequences)
|
| 558 |
+
- **1,828 viral RNA pairs** (6 unique RNA sequences)
|
| 559 |
+
- **1,459 riboswitch pairs** (5 unique RNA sequences)
|
| 560 |
+
- **630 miRNA pairs** (3 unique RNA sequences)
|
| 561 |
+
|
| 562 |
+
### Dataset Downloads
|
| 563 |
+
|
| 564 |
+
- [Training Dataset Download](https://huggingface.co/spaces/IlPakoZ/DLRNA-BERTa/resolve/main/datasets/training_data.csv?download=true)
|
| 565 |
+
- [Test Dataset Download](https://huggingface.co/spaces/IlPakoZ/DLRNA-BERTa/resolve/main/datasets/test_data.csv?download=true)
|
| 566 |
+
|
| 567 |
+
### Citation
|
| 568 |
+
|
| 569 |
+
Original datasets published by:
|
| 570 |
+
**Krishnan et al.** - Available on the RSAPred website in PDF format.
|
| 571 |
+
|
| 572 |
+
*Reference:*
|
| 573 |
+
```bibtex
|
| 574 |
+
@article{krishnan2024reliable,
|
| 575 |
+
title={Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning},
|
| 576 |
+
author={Krishnan, Sowmya R and Roy, Arijit and Gromiha, M Michael},
|
| 577 |
+
journal={Briefings in Bioinformatics},
|
| 578 |
+
volume={25},
|
| 579 |
+
number={2},
|
| 580 |
+
pages={bbae002},
|
| 581 |
+
year={2024},
|
| 582 |
+
publisher={Oxford University Press}
|
| 583 |
+
}
|
| 584 |
+
```
|
| 585 |
+
""")
|
| 586 |
+
with gr.Tab("ℹ️ About"):
|
| 587 |
+
gr.Markdown("""
|
| 588 |
+
## About this application
|
| 589 |
+
|
| 590 |
+
This application implements DLRNA-BERTa, a Dual Langauge RoBERTa Transformer model for predicting drug to RNA target interactions. The model architecture includes:
|
| 591 |
+
|
| 592 |
+
- **Target encoder**: Processes RNA sequences using RNA-BERTa
|
| 593 |
+
- **Drug encoder**: Processes molecular SMILES notation using ChemBERTa
|
| 594 |
+
- **Cross-attention mechanism**: Captures interactions between drugs and targets
|
| 595 |
+
- **Regression head**: Predicts binding affinity scores (pKd values)
|
| 596 |
+
|
| 597 |
+
### Input requirements:
|
| 598 |
+
- **Target sequence**: RNA sequence of the target (nucleotide sequences: A, U, G, C)
|
| 599 |
+
- **Drug SMILES**: Simplified Molecular Input Line Entry System notation
|
| 600 |
+
|
| 601 |
+
### Model features:
|
| 602 |
+
- Cross-attention for drug-target interaction modeling
|
| 603 |
+
- Dropout for regularization
|
| 604 |
+
- Layer normalization for stable training
|
| 605 |
+
- Interpretability mode for contribution and attention visualization
|
| 606 |
+
|
| 607 |
+
### Usage tips:
|
| 608 |
+
1. Load a trained model using the Model Settings tab (optional)
|
| 609 |
+
2. Enter a RNA sequence and drug SMILES in the Prediction & Analysis tab
|
| 610 |
+
3. Click "Predict Interaction" for binding affinity prediction only
|
| 611 |
+
4. Click "Generate Visualizations" to create detailed interaction analysis - results will appear in the Visualizations tab
|
| 612 |
+
|
| 613 |
+
For best results, ensure your input sequences are properly formatted and within reasonable length limits (max 512 tokens).
|
| 614 |
+
|
| 615 |
+
### Visualization features:
|
| 616 |
+
- **Cross-attention heatmap**: Shows cross-attention weights between drug and target tokens
|
| 617 |
+
- **Unnormalized pKd contribution**: Shows unnormalized signed contributions from each target token (only when pKd > 0)
|
| 618 |
+
- **Normalized pKd contribution**: Shows normalized non-negative contributions from each target token
|
| 619 |
+
|
| 620 |
+
### Performance metrics:
|
| 621 |
+
- Training on diverse drug-target interaction datasets
|
| 622 |
+
- Evaluated using RMSE, Pearson correlation, and Concordance Index
|
| 623 |
+
- Optimized for both predictive accuracy and interpretability
|
| 624 |
+
|
| 625 |
+
### GitHub repository:
|
| 626 |
+
- The full model GitHub repository can be found here: https://github.com/IlPakoZ/dlrnaberta-dti-prediction
|
| 627 |
+
|
| 628 |
+
### Contribution:
|
| 629 |
+
- Special thanks to Umut Onur Özcan for help in developing this space:)
|
| 630 |
+
""")
|
| 631 |
+
|
| 632 |
+
# Launch the app
|
| 633 |
+
if __name__ == "__main__":
|
| 634 |
+
# Try to load model on startup
|
| 635 |
+
if os.path.exists("./config.json"):
|
| 636 |
+
app.load_model("./")
|
| 637 |
+
|
| 638 |
+
demo.launch(
|
| 639 |
+
server_name="0.0.0.0",
|
| 640 |
+
server_port=7860,
|
| 641 |
+
share=False,
|
| 642 |
+
show_error=True
|
| 643 |
+
)
|