import gradio as gr import torch import numpy as np from transformers import AutoModel, AutoTokenizer, AutoConfig, RobertaModel from modeling_dlmberta import InteractionModelATTNForRegression, StdScaler from configuration_dlmberta import InteractionModelATTNConfig from chemberta import ChembertaTokenizer import json import os from pathlib import Path import logging # Import visualization functions from analysis import plot_crossattention_weights, plot_presum from PIL import Image, ImageDraw, ImageFont # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def create_placeholder_image(width=400, height=300, text="No visualization available", bg_color=(0, 0, 0, 0)): """ Create a transparent placeholder image with text Args: width (int): Image width height (int): Image height text (str): Text to display bg_color (tuple): Background color (R, G, B, A) - (0,0,0,0) for transparent Returns: PIL.Image: Transparent placeholder image """ # Create image with transparent background img = Image.new('RGBA', (width, height), bg_color) draw = ImageDraw.Draw(img) # Try to use a default font, fallback to default if not available try: font = ImageFont.truetype("arial.ttf", 16) except: try: font = ImageFont.load_default() except: font = None # Get text size and position for centering if font: bbox = draw.textbbox((0, 0), text, font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] else: # Rough estimation if no font available text_width = len(text) * 8 text_height = 16 x = (width - text_width) // 2 y = (height - text_height) // 2 # Draw text in gray draw.text((x, y), text, fill=(128, 128, 128, 255), font=font) return img class DrugTargetInteractionApp: def __init__(self): self.model = None self.target_tokenizer = None self.drug_tokenizer = None self.scaler = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_model(self, model_path="./"): """Load the pre-trained model and tokenizers""" try: # Load configuration config = InteractionModelATTNConfig.from_pretrained(model_path) # Load drug encoder (ChemBERTa) drug_encoder_config = AutoConfig.from_pretrained("DeepChem/ChemBERTa-77M-MTR") drug_encoder_config.pooler = None drug_encoder = RobertaModel(config=drug_encoder_config, add_pooling_layer=False) # Load target encoder target_encoder = AutoModel.from_pretrained("IlPakoZ/RNA-BERTa9700") # Load scaler if exists scaler_path = os.path.join(model_path, "scaler.config") scaler = None if os.path.exists(scaler_path): scaler = StdScaler() scaler.load(model_path) self.model = InteractionModelATTNForRegression.from_pretrained( model_path, config=config, target_encoder=target_encoder, drug_encoder=drug_encoder, scaler=scaler ) self.model.to(self.device) self.model.eval() # Load tokenizers self.target_tokenizer = AutoTokenizer.from_pretrained( os.path.join(model_path, "target_tokenizer") ) # Load drug tokenizer (ChemBERTa) vocab_file = os.path.join(model_path, "drug_tokenizer", "vocab.json") self.drug_tokenizer = ChembertaTokenizer(vocab_file) logger.info("Model and tokenizers loaded successfully!") return True except Exception as e: logger.error(f"Error loading model: {str(e)}") return False def predict_interaction(self, target_sequence, drug_smiles, max_length=512): """Predict drug-target interaction""" if self.model is None: return "Error: Model not loaded. Please load a model first." try: # Tokenize inputs target_inputs = self.target_tokenizer( target_sequence, padding="max_length", truncation=True, max_length=512, return_tensors="pt" ).to(self.device) drug_inputs = self.drug_tokenizer( drug_smiles, padding="max_length", truncation=True, max_length=512, return_tensors="pt" ).to(self.device) # Make prediction self.model.INTERPR_DISABLE_MODE() with torch.no_grad(): prediction = self.model(target_inputs, drug_inputs) # Unscale if scaler exists if self.model.scaler is not None: prediction = self.model.unscale(prediction) prediction_value = prediction.cpu().numpy()[0][0] return f"Predicted Binding Affinity: {prediction_value:.4f}" except Exception as e: logger.error(f"Prediction error: {str(e)}") return f"Error during prediction: {str(e)}" def visualize_interaction(self, target_sequence, drug_smiles): """ Generate visualization images for drug-target interaction Args: target_sequence (str): RNA sequence drug_smiles (str): Drug SMILES notation Returns: tuple: (cross_attention_image, raw_contribution_image, normalized_contribution_image, status_message) """ if self.model is None: return None, None, None, "Error: Model not loaded. Please load a model first." try: # Tokenize inputs target_inputs = self.target_tokenizer( target_sequence, padding="max_length", truncation=True, max_length=512, return_tensors="pt" ).to(self.device) drug_inputs = self.drug_tokenizer( drug_smiles, padding="max_length", truncation=True, max_length=512, return_tensors="pt" ).to(self.device) # Enable interpretation mode self.model.INTERPR_ENABLE_MODE() # Make prediction and extract visualization data with torch.no_grad(): prediction = self.model(target_inputs, drug_inputs) # Unscale if scaler exists if self.model.scaler is not None: prediction = self.model.unscale(prediction) prediction_value = prediction.cpu().numpy()[0][0] # Extract data needed for visualizations presum_values = self.model.model.presum_layer # Shape: (1, seq_len) cross_attention_weights = self.model.model.crossattention_weights # Shape: (batch, heads, seq_len, seq_len) # Get model parameters for scaling w = self.model.model.w.squeeze(1) b = self.model.model.b scaler = self.model.model.scaler logger.info(f"Target inputs shape: {target_inputs['input_ids'].shape}") logger.info(f"Drug inputs shape: {drug_inputs['input_ids'].shape}") # Generate visualizations try: # 1. Cross-attention heatmap cross_attention_img = None logger.info(f"Cross-attention weights type: {type(cross_attention_weights)}") if cross_attention_weights is not None: logger.info(f"Cross-attention weights shape: {cross_attention_weights.shape if hasattr(cross_attention_weights, 'shape') else 'No shape attr'}") try: cross_attn_matrix = cross_attention_weights[0, 0] if cross_attn_matrix is not None: logger.info(f"Extracted cross-attention matrix shape: {cross_attn_matrix.shape}") logger.info(f"Target attention mask shape: {target_inputs['attention_mask'].shape}") logger.info(f"Drug attention mask shape: {drug_inputs['attention_mask'].shape}") cross_attention_img = plot_crossattention_weights( target_inputs["attention_mask"][0], drug_inputs["attention_mask"][0], target_inputs, drug_inputs, cross_attn_matrix, self.target_tokenizer, self.drug_tokenizer ) else: logger.warning("Could not extract valid cross-attention matrix") except (IndexError, TypeError, AttributeError) as e: logger.warning(f"Error extracting cross-attention matrix: {str(e)}") cross_attn_matrix = None else: logger.warning("Cross-attention weights are None") except Exception as e: logger.error(f"Cross-attention visualization error: {str(e)}") cross_attention_img = None try: # 2. Normalized contribution visualization (always generate) normalized_img = None if presum_values is not None: normalized_img = plot_presum( target_inputs, presum_values.detach(), # Detach the tensor scaler, w.detach(), # Detach the tensor b.detach(), # Detach the tensor self.target_tokenizer, raw_affinities=False ) else: logger.warning("Presum values are None") except Exception as e: logger.error(f"Normalized contribution visualization error: {str(e)}") normalized_img = None try: # 3. Raw contribution visualization (only if pKd > 0) raw_img = None if prediction_value > 0 and presum_values is not None: raw_img = plot_presum( target_inputs, presum_values.detach(), # Detach the tensor scaler, w.detach(), # Detach the tensor b.detach(), # Detach the tensor self.target_tokenizer, raw_affinities=True ) else: if prediction_value <= 0: logger.info("Skipping raw affinities visualization as pKd <= 0") if presum_values is None: logger.warning("Cannot generate raw visualization: presum values are None") except Exception as e: logger.error(f"Raw contribution visualization error: {str(e)}") raw_img = None # Disable interpretation mode after use self.model.INTERPR_DISABLE_MODE() # Create placeholder images if generation failed if cross_attention_img is None: cross_attention_img = create_placeholder_image( text="Cross-Attention Heatmap\nFailed to generate" ) if normalized_img is None: normalized_img = create_placeholder_image( text="Normalized Contribution\nFailed to generate" ) if raw_img is None and prediction_value > 0: raw_img = create_placeholder_image( text="Raw Contribution\nFailed to generate" ) elif raw_img is None: raw_img = create_placeholder_image( text="Raw Contribution\nSkipped (pKd ≤ 0)" ) status_msg = f"Predicted Binding Affinity: {prediction_value:.4f}" if prediction_value <= 0: status_msg += " (Raw contribution visualization skipped due to non-positive pKd)" if cross_attention_weights is None: status_msg += " (Cross-attention visualization failed: weights not available)" return cross_attention_img, raw_img, normalized_img, status_msg except Exception as e: logger.error(f"Visualization error: {str(e)}") # Make sure to disable interpretation mode even if there's an error try: self.model.INTERPR_DISABLE_MODE() except: pass return None, None, None, f"Error during visualization: {str(e)}" # Initialize the app app = DrugTargetInteractionApp() def predict_wrapper(target_seq, drug_smiles): """Wrapper function for Gradio interface""" if not target_seq.strip() or not drug_smiles.strip(): return "Please provide both target sequence and drug SMILES." return app.predict_interaction(target_seq, drug_smiles) def visualize_wrapper(target_seq, drug_smiles): """Wrapper function for visualization""" if not target_seq.strip() or not drug_smiles.strip(): return None, None, None, "Please provide both target sequence and drug SMILES." return app.visualize_interaction(target_seq, drug_smiles) def load_model_wrapper(model_path): """Wrapper function to load model""" if app.load_model(model_path): return "Model loaded successfully!" else: return "Failed to load model. Check the path and files." # Create Gradio interface with gr.Blocks(title="Drug-Target Interaction Predictor", theme=gr.themes.Soft()) as demo: gr.HTML("""

đŸ§Ŧ Drug-Target Interaction Predictor

Predict binding affinity between drugs and target RNA sequences using deep learning

""") with gr.Tab("🔮 Prediction"): with gr.Row(): with gr.Column(scale=1): target_input = gr.Textbox( label="Target RNA Sequence", placeholder="Enter RNA sequence (e.g., AUGCUAGCUAGUACGUA...)", lines=4, max_lines=6 ) drug_input = gr.Textbox( label="Drug SMILES", placeholder="Enter SMILES notation (e.g., CC(C)CC1=CC=C(C=C1)C(C)C(=O)O)", lines=2 ) # Buttons side by side with gr.Row(): predict_btn = gr.Button("🚀 Predict Interaction", variant="primary", size="lg") visualize_btn = gr.Button("📊 Visualize Interaction", variant="secondary", size="lg") with gr.Column(scale=1): prediction_output = gr.Textbox( label="Prediction Result", interactive=False, lines=3 ) # Visualization outputs section gr.HTML("

📈 Interaction Visualizations

") with gr.Row(): with gr.Column(): viz_image1 = gr.Image( label="Cross-Attention Heatmap", type="pil", interactive=False, container=True, height=300, value=create_placeholder_image(text="Cross-Attention Heatmap\n(Click Visualize to generate)") ) with gr.Column(): viz_image2 = gr.Image( label="Raw pKd Contribution Visualization", type="pil", interactive=False, container=True, height=300, value=create_placeholder_image(text="Raw pKd Contribution\n(Click Visualize to generate)") ) with gr.Column(): viz_image3 = gr.Image( label="Normalized pKd Contribution Visualization", type="pil", interactive=False, container=True, height=300, value=create_placeholder_image(text="Normalized pKd Contribution\n(Click Visualize to generate)") ) viz_status = gr.Textbox( label="Visualization Status", interactive=False, lines=2 ) # Example inputs gr.HTML("

📚 Example Inputs:

") examples = gr.Examples( examples=[ [ "AUGCUAGCUAGUACGUAUAUCUGCACUGC", "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O" ], [ "AUGCGAUCGACGUACGUUAGCCGUAGCGUAGCUAGUGUAGCUAGUAGCU", "C1=CC=C(C=C1)NC(=O)C2=CC=CC=N2" ] ], inputs=[target_input, drug_input], outputs=prediction_output, fn=predict_wrapper, cache_examples=False ) # Button click events predict_btn.click( fn=predict_wrapper, inputs=[target_input, drug_input], outputs=prediction_output ) visualize_btn.click( fn=visualize_wrapper, inputs=[target_input, drug_input], outputs=[viz_image1, viz_image2, viz_image3, viz_status] ) with gr.Tab("âš™ī¸ Model Settings"): gr.HTML("

Model Configuration

") model_path_input = gr.Textbox( label="Model Path", value="./", placeholder="Path to model directory" ) load_model_btn = gr.Button("đŸ”Ĩ Load Model", variant="secondary") model_status = gr.Textbox( label="Status", interactive=False, value="No model loaded" ) load_model_btn.click( fn=load_model_wrapper, inputs=model_path_input, outputs=model_status ) with gr.Tab("â„šī¸ About"): gr.Markdown(""" ## About This Application This application uses a deep learning model for predicting drug-target interactions. The model architecture includes: - **Target Encoder**: Processes RNA sequences - **Drug Encoder**: Processes molecular SMILES notation - **Cross-Attention Mechanism**: Captures interactions between drugs and targets - **Regression Head**: Predicts binding affinity scores ### Input Requirements: - **Target Sequence**: RNA sequence of the target - **Drug SMILES**: Simplified Molecular Input Line Entry System notation ### Model Features: - Cross-attention for drug-target interaction modeling - Dropout for regularization - Layer normalization for stable training - Interpretability mode for contribution and attention visualization ### Usage Tips: 1. Load your trained model using the Model Settings tab 2. Enter a RNA sequence and drug SMILES 3. Click "Predict Interaction" to get binding affinity prediction 4. Click "Visualize Interaction" to see detailed interaction analysis For best results, ensure your input sequences are properly formatted and within reasonable length limits. ### Visualization Features: - **Cross-Attention Heatmap**: Shows cross-attention between drug and target tokens - **Raw pKd Contribution**: Shows raw signed contributions (only when pKd > 0) - **Normalized pKd Contribution**: Shows normalized non-negative contributions """) # Launch the app if __name__ == "__main__": # Try to load model on startup if os.path.exists("./config.json"): app.load_model("./") demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True )