Spaces:
Build error
Build error
Roman
commited on
Commit
·
070b924
1
Parent(s):
6b2b081
Add DeepSeek-OCR Gradio app for HF Space
Browse files- .gitignore +34 -0
- README.md +39 -1
- app.py +364 -0
- requirements.txt +14 -0
.gitignore
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.py[cod]
|
| 3 |
+
*.so
|
| 4 |
+
*.dylib
|
| 5 |
+
*.pyd
|
| 6 |
+
|
| 7 |
+
.DS_Store
|
| 8 |
+
.env
|
| 9 |
+
.env.*
|
| 10 |
+
.venv/
|
| 11 |
+
venv/
|
| 12 |
+
|
| 13 |
+
# Python cache & build artifacts
|
| 14 |
+
build/
|
| 15 |
+
dist/
|
| 16 |
+
*.egg-info/
|
| 17 |
+
|
| 18 |
+
# Hugging Face caches
|
| 19 |
+
/.cache/
|
| 20 |
+
/cache/
|
| 21 |
+
/huggingface/
|
| 22 |
+
/.huggingface/
|
| 23 |
+
/logs/
|
| 24 |
+
|
| 25 |
+
# Temporary OCR outputs
|
| 26 |
+
deepseek_ocr_out_*/
|
| 27 |
+
deepseek_upload_*
|
| 28 |
+
tmp/
|
| 29 |
+
|
| 30 |
+
# Notebooks & checkpoints
|
| 31 |
+
*.ipynb_checkpoints
|
| 32 |
+
*.ckpt
|
| 33 |
+
*.safetensors
|
| 34 |
+
|
README.md
CHANGED
|
@@ -8,6 +8,44 @@ sdk_version: 5.49.1
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
short_description: OCR interface for your PDF files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
short_description: OCR interface for your PDF files
|
| 11 |
+
python_version: 3.10
|
| 12 |
+
hardware: t4-small
|
| 13 |
+
license: mit
|
| 14 |
+
tags:
|
| 15 |
+
- ocr
|
| 16 |
+
- pdf
|
| 17 |
+
- gradio
|
| 18 |
+
- deepseek
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# DeepSeek-OCR PDF & Image Interface
|
| 22 |
+
|
| 23 |
+
This Space wraps [`deepseek-ai/DeepSeek-OCR`](https://huggingface.co/deepseek-ai/DeepSeek-OCR) with a polished Gradio UI that can transcribe both individual images and multi-page PDFs into clean Markdown. It targets the free T4 GPU tier for fast startup while enabling flash-attention and optional vLLM acceleration for multi-page batching.
|
| 24 |
+
|
| 25 |
+
## Features
|
| 26 |
+
|
| 27 |
+
- Support for `.png`, `.jpg`, `.jpeg`, `.webp`, `.tiff`, and `.pdf`
|
| 28 |
+
- Automatic PDF page conversion with PyMuPDF at 192 DPI
|
| 29 |
+
- Gundam mode defaults (`base_size=1024`, `image_size=640`, `crop_mode=True`) for balanced speed and accuracy
|
| 30 |
+
- Markdown-formatted output with per-page sections
|
| 31 |
+
- Optional custom prompt to tailor extraction instructions
|
| 32 |
+
|
| 33 |
+
## Running Locally
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
python -m venv .venv
|
| 37 |
+
source .venv/bin/activate
|
| 38 |
+
pip install -r requirements.txt
|
| 39 |
+
python app.py
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
The interface launches on `http://127.0.0.1:7860` by default. Set the environment variable `USE_VLLM=0` to disable the vLLM backend or leave it enabled to leverage faster batching when the dependency is available.
|
| 43 |
+
|
| 44 |
+
## Space Configuration
|
| 45 |
+
|
| 46 |
+
- **Hardware**: `t4-small`
|
| 47 |
+
- **Python**: `3.10`
|
| 48 |
+
- **SDK**: `Gradio 5.49.1`
|
| 49 |
+
- **Model**: `deepseek-ai/DeepSeek-OCR`
|
| 50 |
+
|
| 51 |
+
Refer to the [Spaces configuration reference](https://huggingface.co/docs/hub/spaces-config-reference) for additional customization options.
|
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio interface for DeepSeek-OCR on Hugging Face Spaces.
|
| 2 |
+
|
| 3 |
+
This application loads the `deepseek-ai/DeepSeek-OCR` vision-language model
|
| 4 |
+
and exposes a simple interface capable of processing both image and PDF
|
| 5 |
+
documents. The implementation targets the Hugging Face free T4 GPU runtime and
|
| 6 |
+
optimizes throughput with bfloat16 precision, flash-attention, and optional
|
| 7 |
+
vLLM acceleration when available.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import contextlib
|
| 13 |
+
import dataclasses
|
| 14 |
+
import logging
|
| 15 |
+
import os
|
| 16 |
+
import shutil
|
| 17 |
+
import tempfile
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from typing import List, Optional
|
| 20 |
+
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import torch
|
| 23 |
+
from PIL import Image
|
| 24 |
+
from transformers import AutoModel, AutoTokenizer
|
| 25 |
+
|
| 26 |
+
try: # Optional dependency for faster batching
|
| 27 |
+
from vllm import LLM, SamplingParams # type: ignore
|
| 28 |
+
|
| 29 |
+
_HAS_VLLM = True
|
| 30 |
+
except Exception: # pragma: no cover - optional path
|
| 31 |
+
LLM = None # type: ignore
|
| 32 |
+
SamplingParams = None # type: ignore
|
| 33 |
+
_HAS_VLLM = False
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
import fitz # type: ignore[attr-defined]
|
| 37 |
+
except Exception as exc: # pragma: no cover - ensures import error is visible
|
| 38 |
+
raise RuntimeError(
|
| 39 |
+
"PyMuPDF (fitz) is required for PDF processing. Install pymupdf."
|
| 40 |
+
) from exc
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
logging.basicConfig(level=logging.INFO)
|
| 44 |
+
LOGGER = logging.getLogger("deepseek_ocr_app")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-OCR"
|
| 48 |
+
DEFAULT_PROMPT = "<image>\n<|grounding|>Convert the document to markdown."
|
| 49 |
+
GUNDAM_CONFIG = {
|
| 50 |
+
"base_size": 1024,
|
| 51 |
+
"image_size": 640,
|
| 52 |
+
"crop_mode": True,
|
| 53 |
+
"test_compress": True,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@dataclasses.dataclass
|
| 58 |
+
class PageResult:
|
| 59 |
+
"""Result for a single page processed by DeepSeek-OCR."""
|
| 60 |
+
|
| 61 |
+
index: int
|
| 62 |
+
text: str
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@dataclasses.dataclass
|
| 66 |
+
class DocumentResult:
|
| 67 |
+
"""Aggregate OCR result for an input document."""
|
| 68 |
+
|
| 69 |
+
filename: str
|
| 70 |
+
page_results: List[PageResult]
|
| 71 |
+
|
| 72 |
+
def to_markdown(self) -> str:
|
| 73 |
+
sections = []
|
| 74 |
+
for page in self.page_results:
|
| 75 |
+
heading = f"### Page {page.index}"
|
| 76 |
+
sections.append(f"{heading}\n\n{page.text.strip()}".strip())
|
| 77 |
+
return "\n\n".join(sections).strip()
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def has_cuda() -> bool:
|
| 81 |
+
return torch.cuda.is_available()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class DeepSeekOCREngine:
|
| 85 |
+
"""Wrapper around the DeepSeek-OCR model for document processing."""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
model_name: str = MODEL_NAME,
|
| 90 |
+
prompt: str = DEFAULT_PROMPT,
|
| 91 |
+
config: Optional[dict] = None,
|
| 92 |
+
enable_vllm: bool = True,
|
| 93 |
+
) -> None:
|
| 94 |
+
self.model_name = model_name
|
| 95 |
+
self.prompt_template = prompt
|
| 96 |
+
self.config = {**GUNDAM_CONFIG, **(config or {})}
|
| 97 |
+
self.enable_vllm = enable_vllm and _HAS_VLLM
|
| 98 |
+
self.device = torch.device("cuda" if has_cuda() else "cpu")
|
| 99 |
+
self._model = None
|
| 100 |
+
self._tokenizer = None
|
| 101 |
+
self._vllm_engine = None
|
| 102 |
+
self._vllm_sampling_params = None
|
| 103 |
+
self._output_root = Path(tempfile.mkdtemp(prefix="deepseek_ocr_out_"))
|
| 104 |
+
self._load_model()
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def tokenizer(self):
|
| 108 |
+
if self._tokenizer is None:
|
| 109 |
+
raise RuntimeError("Tokenizer not initialized")
|
| 110 |
+
return self._tokenizer
|
| 111 |
+
|
| 112 |
+
@property
|
| 113 |
+
def model(self):
|
| 114 |
+
if self._model is None:
|
| 115 |
+
raise RuntimeError("Model not initialized")
|
| 116 |
+
return self._model
|
| 117 |
+
|
| 118 |
+
def _load_model(self) -> None:
|
| 119 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 120 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 121 |
+
|
| 122 |
+
if self.enable_vllm:
|
| 123 |
+
try:
|
| 124 |
+
LOGGER.info("Initializing DeepSeek-OCR with vLLM backend")
|
| 125 |
+
self._vllm_engine = LLM(
|
| 126 |
+
model=self.model_name,
|
| 127 |
+
dtype="bfloat16" if has_cuda() else "float32",
|
| 128 |
+
tokenizer=self.model_name,
|
| 129 |
+
trust_remote_code=True,
|
| 130 |
+
)
|
| 131 |
+
self._vllm_sampling_params = SamplingParams(
|
| 132 |
+
temperature=0.0,
|
| 133 |
+
top_p=0.9,
|
| 134 |
+
max_tokens=4096,
|
| 135 |
+
)
|
| 136 |
+
except Exception as vllm_error:
|
| 137 |
+
LOGGER.warning(
|
| 138 |
+
"vLLM initialization failed (%s). Falling back to HF AutoModel.",
|
| 139 |
+
vllm_error,
|
| 140 |
+
)
|
| 141 |
+
self.enable_vllm = False
|
| 142 |
+
|
| 143 |
+
if not self.enable_vllm:
|
| 144 |
+
LOGGER.info("Loading DeepSeek-OCR with transformers backend")
|
| 145 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
| 146 |
+
self.model_name, trust_remote_code=True
|
| 147 |
+
)
|
| 148 |
+
torch_dtype = torch.bfloat16 if self.device.type == "cuda" else torch.float32
|
| 149 |
+
self._model = AutoModel.from_pretrained(
|
| 150 |
+
self.model_name,
|
| 151 |
+
trust_remote_code=True,
|
| 152 |
+
use_safetensors=True,
|
| 153 |
+
_attn_implementation="flash_attention_2",
|
| 154 |
+
torch_dtype=torch_dtype,
|
| 155 |
+
)
|
| 156 |
+
self._model = self._model.eval().to(self.device)
|
| 157 |
+
|
| 158 |
+
def cleanup(self) -> None:
|
| 159 |
+
if self._output_root.exists():
|
| 160 |
+
shutil.rmtree(self._output_root, ignore_errors=True)
|
| 161 |
+
|
| 162 |
+
def _infer_transformers(self, image_path: Path, prompt: str) -> str:
|
| 163 |
+
result = self.model.infer(
|
| 164 |
+
self.tokenizer,
|
| 165 |
+
prompt=prompt,
|
| 166 |
+
image_file=str(image_path),
|
| 167 |
+
output_path=str(self._output_root),
|
| 168 |
+
base_size=self.config["base_size"],
|
| 169 |
+
image_size=self.config["image_size"],
|
| 170 |
+
crop_mode=self.config["crop_mode"],
|
| 171 |
+
save_results=False,
|
| 172 |
+
test_compress=self.config.get("test_compress", True),
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
if isinstance(result, dict):
|
| 176 |
+
for key in ("text", "markdown", "raw_text", "result"):
|
| 177 |
+
if key in result and isinstance(result[key], str):
|
| 178 |
+
return result[key]
|
| 179 |
+
return "\n".join(str(v) for v in result.values())
|
| 180 |
+
if isinstance(result, (list, tuple)):
|
| 181 |
+
return "\n".join(str(item) for item in result)
|
| 182 |
+
return str(result)
|
| 183 |
+
|
| 184 |
+
def _infer_vllm(self, image_path: Path, prompt: str) -> str:
|
| 185 |
+
if not self.enable_vllm or self._vllm_engine is None:
|
| 186 |
+
raise RuntimeError("vLLM backend is not initialized")
|
| 187 |
+
|
| 188 |
+
formatted_prompt = f"<image>{prompt.replace('<image>', '').strip()}"
|
| 189 |
+
outputs = self._vllm_engine.generate(
|
| 190 |
+
prompts=[formatted_prompt],
|
| 191 |
+
image_data=[[Image.open(image_path)]],
|
| 192 |
+
sampling_params=self._vllm_sampling_params,
|
| 193 |
+
)
|
| 194 |
+
return outputs[0].outputs[0].text if outputs else ""
|
| 195 |
+
|
| 196 |
+
def _infer(self, image_path: Path, prompt: str) -> str:
|
| 197 |
+
if self.enable_vllm:
|
| 198 |
+
try:
|
| 199 |
+
return self._infer_vllm(image_path, prompt)
|
| 200 |
+
except Exception as error:
|
| 201 |
+
LOGGER.warning(
|
| 202 |
+
"Falling back to transformers backend after vLLM error: %s",
|
| 203 |
+
error,
|
| 204 |
+
)
|
| 205 |
+
self.enable_vllm = False
|
| 206 |
+
return self._infer_transformers(image_path, prompt)
|
| 207 |
+
|
| 208 |
+
def _convert_pdf_to_images(
|
| 209 |
+
self, pdf_path: Path, output_dir: Path, dpi: int = 192
|
| 210 |
+
) -> List[Path]:
|
| 211 |
+
document = fitz.open(pdf_path)
|
| 212 |
+
image_paths: List[Path] = []
|
| 213 |
+
zoom = dpi / 72 # Default PDF DPI is 72
|
| 214 |
+
matrix = fitz.Matrix(zoom, zoom)
|
| 215 |
+
|
| 216 |
+
for page_index in range(len(document)):
|
| 217 |
+
page = document.load_page(page_index)
|
| 218 |
+
pixmap = page.get_pixmap(matrix=matrix, alpha=False)
|
| 219 |
+
page_path = output_dir / f"page-{page_index + 1:04d}.png"
|
| 220 |
+
pixmap.save(page_path)
|
| 221 |
+
image_paths.append(page_path)
|
| 222 |
+
|
| 223 |
+
document.close()
|
| 224 |
+
return image_paths
|
| 225 |
+
|
| 226 |
+
def process_document(
|
| 227 |
+
self,
|
| 228 |
+
file_path: Path,
|
| 229 |
+
prompt: Optional[str] = None,
|
| 230 |
+
progress: Optional[gr.Progress] = None,
|
| 231 |
+
) -> DocumentResult:
|
| 232 |
+
prompt_to_use = prompt.strip() if prompt and prompt.strip() else self.prompt_template
|
| 233 |
+
suffix = file_path.suffix.lower()
|
| 234 |
+
|
| 235 |
+
with tempfile.TemporaryDirectory(prefix="deepseek_ocr_tmp_") as tmp_dir:
|
| 236 |
+
tmp_dir_path = Path(tmp_dir)
|
| 237 |
+
if suffix in {".png", ".jpg", ".jpeg", ".bmp", ".webp", ".tif", ".tiff"}:
|
| 238 |
+
image_paths = [self._ensure_rgb_image(file_path, tmp_dir_path)]
|
| 239 |
+
elif suffix == ".pdf":
|
| 240 |
+
if progress:
|
| 241 |
+
progress(0.0, desc="Converting PDF pages")
|
| 242 |
+
image_paths = self._convert_pdf_to_images(file_path, tmp_dir_path)
|
| 243 |
+
else:
|
| 244 |
+
raise ValueError("Unsupported file format. Please upload an image or PDF.")
|
| 245 |
+
|
| 246 |
+
total_pages = len(image_paths)
|
| 247 |
+
page_results: List[PageResult] = []
|
| 248 |
+
|
| 249 |
+
for idx, image_path in enumerate(image_paths, start=1):
|
| 250 |
+
if progress:
|
| 251 |
+
progress(
|
| 252 |
+
(idx - 1) / max(total_pages, 1),
|
| 253 |
+
desc=f"Processing page {idx}/{total_pages}"
|
| 254 |
+
)
|
| 255 |
+
text = self._infer(image_path, prompt_to_use)
|
| 256 |
+
page_results.append(PageResult(index=idx, text=text))
|
| 257 |
+
if progress:
|
| 258 |
+
progress(1.0, desc="Completed")
|
| 259 |
+
|
| 260 |
+
return DocumentResult(filename=file_path.name, page_results=page_results)
|
| 261 |
+
|
| 262 |
+
def _ensure_rgb_image(self, image_path: Path, output_dir: Path) -> Path:
|
| 263 |
+
"""Ensure the provided image is saved as RGB PNG for the model."""
|
| 264 |
+
|
| 265 |
+
image = Image.open(image_path)
|
| 266 |
+
if image.mode != "RGB":
|
| 267 |
+
image = image.convert("RGB")
|
| 268 |
+
output_path = output_dir / f"image-{image_path.stem}.png"
|
| 269 |
+
image.save(output_path, format="PNG", optimize=True)
|
| 270 |
+
return output_path
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
@contextlib.contextmanager
|
| 274 |
+
def progress_tracker(progress: Optional[gr.Progress]):
|
| 275 |
+
yield progress if progress else None
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
ENGINE: Optional[DeepSeekOCREngine] = None
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def get_engine() -> DeepSeekOCREngine:
|
| 282 |
+
global ENGINE
|
| 283 |
+
if ENGINE is None:
|
| 284 |
+
use_vllm_env = os.getenv("USE_VLLM", "1").strip().lower()
|
| 285 |
+
enable_vllm = use_vllm_env not in {"0", "false", "no"}
|
| 286 |
+
LOGGER.info("Instantiating DeepSeek-OCR engine (vLLM=%s)", enable_vllm)
|
| 287 |
+
ENGINE = DeepSeekOCREngine(enable_vllm=enable_vllm)
|
| 288 |
+
return ENGINE
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def handle_upload(
|
| 292 |
+
file: gr.File | None,
|
| 293 |
+
prompt: str,
|
| 294 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 295 |
+
) -> str:
|
| 296 |
+
if file is None:
|
| 297 |
+
raise gr.Error("Please upload an image or PDF file to start OCR.")
|
| 298 |
+
|
| 299 |
+
uploaded_path = Path(file.name)
|
| 300 |
+
fd, tmp_path_str = tempfile.mkstemp(
|
| 301 |
+
prefix="deepseek_upload_",
|
| 302 |
+
suffix=uploaded_path.suffix,
|
| 303 |
+
)
|
| 304 |
+
os.close(fd)
|
| 305 |
+
tmp_copy = Path(tmp_path_str)
|
| 306 |
+
shutil.copy(uploaded_path, tmp_copy)
|
| 307 |
+
|
| 308 |
+
engine = get_engine()
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
with progress_tracker(progress) as tracker:
|
| 312 |
+
result = engine.process_document(tmp_copy, prompt=prompt, progress=tracker)
|
| 313 |
+
finally:
|
| 314 |
+
tmp_copy.unlink(missing_ok=True)
|
| 315 |
+
|
| 316 |
+
return result.to_markdown()
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def build_interface() -> gr.Blocks:
|
| 320 |
+
description = (
|
| 321 |
+
"Upload an image or PDF and DeepSeek-OCR will transcribe it into Markdown. "
|
| 322 |
+
"Optimized for Hugging Face free T4 GPU Spaces with flash-attention and "
|
| 323 |
+
"optional vLLM acceleration."
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
with gr.Blocks(title="DeepSeek-OCR", theme=gr.themes.Soft()) as demo:
|
| 327 |
+
gr.Markdown("# DeepSeek-OCR PDF & Image Reader")
|
| 328 |
+
gr.Markdown(description)
|
| 329 |
+
|
| 330 |
+
with gr.Row(equal_height=False):
|
| 331 |
+
with gr.Column(scale=1):
|
| 332 |
+
file_input = gr.File(
|
| 333 |
+
label="Upload document",
|
| 334 |
+
file_count="single",
|
| 335 |
+
type="file",
|
| 336 |
+
file_types=[".png", ".jpg", ".jpeg", ".pdf", ".bmp", ".webp", ".tiff", ".tif"],
|
| 337 |
+
)
|
| 338 |
+
prompt_box = gr.Textbox(
|
| 339 |
+
label="Prompt",
|
| 340 |
+
value=DEFAULT_PROMPT,
|
| 341 |
+
lines=3,
|
| 342 |
+
show_label=True,
|
| 343 |
+
placeholder="Enter the grounding instruction for OCR",
|
| 344 |
+
)
|
| 345 |
+
submit_btn = gr.Button("Run OCR", variant="primary")
|
| 346 |
+
|
| 347 |
+
with gr.Column(scale=1):
|
| 348 |
+
result_output = gr.Markdown(label="OCR Markdown Output")
|
| 349 |
+
|
| 350 |
+
submit_btn.click(
|
| 351 |
+
fn=handle_upload,
|
| 352 |
+
inputs=[file_input, prompt_box],
|
| 353 |
+
outputs=[result_output],
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
return demo
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
demo = build_interface()
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
if __name__ == "__main__":
|
| 363 |
+
demo.queue(concurrency_count=2, status_tracker=False).launch()
|
| 364 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
transformers==4.46.3
|
| 3 |
+
tokenizers==0.20.3
|
| 4 |
+
einops==0.8.0
|
| 5 |
+
addict==2.4.0
|
| 6 |
+
easydict==1.11
|
| 7 |
+
flash-attn==2.7.3
|
| 8 |
+
gradio==5.49.1
|
| 9 |
+
pymupdf==1.24.11
|
| 10 |
+
pillow==10.4.0
|
| 11 |
+
numpy==2.1.2
|
| 12 |
+
vllm==0.6.1
|
| 13 |
+
uvicorn==0.30.6
|
| 14 |
+
|