text2tag-llm / genimage.py
John6666's picture
Upload 6 files
8f48a77 verified
import spaces
import gradio as gr
import torch
import gc, os, uuid, json
from PIL import PngImagePlugin
from diffusers import DiffusionPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
if os.getenv("SPACES_ZERO_GPU", None):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("high") # https://pytorch.org/blog/accelerating-generative-ai-3/
def load_pipeline():
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained(
#"John6666/rae-diffusion-xl-v2-sdxl-spo-pcm",
"Raelina/Raehoshi-illust-XL-6",
#custom_pipeline="lpw_stable_diffusion_xl",
#custom_pipeline="nyanko7/sdxl_smoothed_energy_guidance",
torch_dtype=dtype,
#vae=vae,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to("cpu")
return pipe
def token_auto_concat_embeds(pipe, positive, negative):
max_length = pipe.tokenizer.model_max_length
positive_length = pipe.tokenizer(positive, return_tensors="pt").input_ids.shape[-1]
negative_length = pipe.tokenizer(negative, return_tensors="pt").input_ids.shape[-1]
print(f'Token length is model maximum: {max_length}, positive length: {positive_length}, negative length: {negative_length}.')
if max_length < positive_length or max_length < negative_length:
print('Concatenated embedding.')
if positive_length > negative_length:
positive_ids = pipe.tokenizer(positive, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=positive_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
negative_ids = pipe.tokenizer(negative, return_tensors="pt").input_ids.to("cuda")
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=negative_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
positive_concat_embeds = []
negative_concat_embeds = []
for i in range(0, positive_ids.shape[-1], max_length):
positive_concat_embeds.append(pipe.text_encoder(positive_ids[:, i: i + max_length])[0])
negative_concat_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0])
positive_prompt_embeds = torch.cat(positive_concat_embeds, dim=1)
negative_prompt_embeds = torch.cat(negative_concat_embeds, dim=1)
return positive_prompt_embeds, negative_prompt_embeds
def save_image(image, metadata, output_dir):
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
pipe = load_pipeline()
@torch.inference_mode()
@spaces.GPU(duration=15)
def generate_image(prompt, neg_prompt, progress=gr.Progress(track_tqdm=True)):
pipe.to(device)
#prompt += ", masterpiece, best quality, very aesthetic, absurdres"
#neg_prompt += "bad hands, bad feet, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast"
neg_prompt += "bad quality, worst quality, poorly drawn, sketch, multiple views, bad anatomy, bad hands, missing fingers, extra fingers, extra digits, fewer digits, signature, watermark, username"
width = 1024
height = 1024
cfg = 6.0
steps = 28
metadata = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": cfg,
"num_inference_steps": steps,
"sampler": "Euler a",
}
try:
#positive_embeds, negative_embeds = token_auto_concat_embeds(pipe, prompt, neg_prompt)
images = pipe(
prompt=prompt,
negative_prompt=neg_prompt,
width=width,
height=height,
guidance_scale=cfg,# seg_scale=3.0, seg_applied_layers=["mid"],
num_inference_steps=steps,
output_type="pil",
#clip_skip=1,
).images
if images:
image_paths = [
save_image(image, metadata, "./outputs")
for image in images
]
return image_paths
except Exception as e:
print(e)
return []
finally:
pipe.to("cpu")
torch.cuda.empty_cache()
gc.collect()