UAS_MCL_FAREL / app.py
JoshMe1's picture
Update app.py
46a15b1
import os
import pandas as pd
import streamlit as st
from sklearn.linear_model import LinearRegression
def predict_hotel_price(train_features_path, train_label_path, test_features_path):
# Baca data dari file train_features.csv
train_features = pd.read_csv(train_features_path)
# Baca data dari file train_label.csv
train_label = pd.read_csv(train_label_path)
# Gabungkan kedua dataframe berdasarkan indeks
df_merged = pd.concat([train_features, train_label], axis=1)
# Tambahkan kolom 'id' di paling kiri dengan menggunakan range indeks
df_merged.insert(0, 'ID', range(len(df_merged)))
# Simpan dataframe ke dalam file CSV
df_merged.to_csv('merged_data.csv', index=False)
# Baca file merged_data.csv sebagai hasil prapemrosesan
hasil_features = pd.read_csv('merged_data.csv')
# Prapemrosesan data pada kolom rating dengan mengubah format string menjadi float
hasil_features['rating'] = hasil_features['rating'].apply(lambda x: float(x.split()[0]) if isinstance(x, str) and len(x.split())>0 and x.split()[0].replace('.','').isdigit() else None)
hasil_features['Price'] = hasil_features['Price'].apply(lambda x: float(x.replace(',', '').replace('avg/night', '')) if isinstance(x, str) else x)
# Menghilangkan missing value pada kolom rating
hasil_features.dropna(subset=['rating'], inplace=True)
hasil_features = hasil_features.drop(['facilities', 'location'], axis=1)
# Membuat model Linear Regression
model = LinearRegression()
# Melatih model dengan dataset train
model.fit(hasil_features.drop(['ID', 'Price'], axis=1), hasil_features['Price'])
# Membaca dataset test dan menghapus kolom facilities, location, dan ID
test_features = pd.read_csv(test_features_path)
test_features = test_features.drop(['facilities', 'location', 'ID'], axis=1)
# Prapemrosesan data pada kolom rating dengan mengubah format string menjadi float
test_features['rating'] = test_features['rating'].apply(lambda x: float(x.split()[0]) if isinstance(x, str) else x)
# Melakukan prediksi terhadap dataset test
predictions = model.predict(test_features)
# Convert predictions to a pandas dataframe
predictions_df = pd.DataFrame(predictions, columns=['Price'])
# Add the 'ID' column using square bracket notation
predictions_df.insert(loc=0, column='ID', value=range(len(predictions_df)))
# mengubah nilai kolom Price menjadi bilangan bulat
predictions_df['Price'] = predictions_df['Price'].astype(int)
# Membuat file CSV dari dataframe predictions_df
predictions_df.to_csv('predictions.csv', index=False)
return predictions_df
def main():
st.title("Hotel Price Prediction With Linear Regression")
st.write("Memprediksi Harga Hotel Berdasarkan Rating")
# Membuat list nama file dari direktori yang berisi file input
input_dir = 'dataset'
input_files = os.listdir(input_dir)
# Mengubah list nama file menjadi opsi dropdown
train_features_path = st.selectbox("Train Features = 'Berisi Fitur-Fitur Dari Data Latih'", [os.path.join(input_dir, file) for file in input_files])
train_label_path = st.selectbox("Train Label = 'Berisi Label Dari Data Latih'", [os.path.join(input_dir, file) for file in input_files])
test_features_path = st.selectbox("Test Features = 'Berisi Fitur-Fitur Dari Data Uji'", [os.path.join(input_dir, file) for file in input_files])
# Menjalankan fungsi predict_hotel_price dan menampilkan hasilnya
if st.button("Prediksi Hasil Harga"):
predictions_df = predict_hotel_price(train_features_path, train_label_path, test_features_path)
st.write(predictions_df)
st.download_button(
label="Download Hasil Prediksi CSV",
data=predictions_df.to_csv(index=False),
file_name="predictions.csv",
mime="text/csv"
)
if __name__ == '__main__':
main()