Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
class HybridCodeClassifier(nn.Module):
|
| 8 |
+
def __init__(self, model_name="microsoft/codebert-base", num_labels=4):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.encoder = AutoModel.from_pretrained(model_name)
|
| 11 |
+
self.classifier = nn.Linear(768, num_labels)
|
| 12 |
+
|
| 13 |
+
def forward(self, input_ids, attention_mask):
|
| 14 |
+
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 15 |
+
return self.classifier(outputs.last_hidden_state[:, 0, :])
|
| 16 |
+
|
| 17 |
+
# Label mappings for Task C
|
| 18 |
+
label_mappings = {
|
| 19 |
+
0: "Human-written π¨βπ»",
|
| 20 |
+
1: "Machine-generated π€",
|
| 21 |
+
2: "Hybrid π",
|
| 22 |
+
3: "Adversarial βοΈ"
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
label_descriptions = {
|
| 26 |
+
0: "β’ Natural code patterns\nβ’ Imperfections and TODOs\nβ’ Personal coding style\nβ’ Practical solutions",
|
| 27 |
+
1: "β’ Perfect structure\nβ’ Comprehensive docs\nβ’ Consistent formatting\nβ’ Over-engineered",
|
| 28 |
+
2: "β’ Mixed patterns\nβ’ Some AI elements\nβ’ Some human elements\nβ’ Inconsistent style",
|
| 29 |
+
3: "β’ Designed to mimic humans\nβ’ Strategic imperfections\nβ’ Hard to detect\nβ’ Evasive patterns"
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
@torch.no_grad()
|
| 33 |
+
def load_taskC_model():
|
| 34 |
+
model = HybridCodeClassifier(num_labels=4)
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from huggingface_hub import hf_hub_download
|
| 38 |
+
model_path = hf_hub_download(
|
| 39 |
+
repo_id="KrishnaKarthik/ai-code-detector",
|
| 40 |
+
filename="taskC_model.pth"
|
| 41 |
+
)
|
| 42 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
| 43 |
+
print("β
Loaded Task C Hybrid Code Detector!")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"β Error: {str(e)}")
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
model.eval()
|
| 49 |
+
return model
|
| 50 |
+
|
| 51 |
+
model_taskC = load_taskC_model()
|
| 52 |
+
tokenizer_taskC = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
| 53 |
+
|
| 54 |
+
def detect_hybrid_code(code):
|
| 55 |
+
"""Detect human, machine, hybrid, or adversarial code"""
|
| 56 |
+
if not code.strip():
|
| 57 |
+
return "Please enter code", "", "", ""
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
inputs = tokenizer_taskC(code, return_tensors="pt", truncation=True, max_length=512)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model_taskC(**inputs)
|
| 64 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 65 |
+
probs = probabilities[0].numpy()
|
| 66 |
+
|
| 67 |
+
# Get all predictions
|
| 68 |
+
results = "π DETECTION RESULTS:\n"
|
| 69 |
+
results += "=" * 50 + "\n"
|
| 70 |
+
|
| 71 |
+
for i, (label_id, label_name) in enumerate(label_mappings.items()):
|
| 72 |
+
prob = probs[label_id]
|
| 73 |
+
results += f"{i+1}. {label_name:20} {prob:.1%}\n"
|
| 74 |
+
|
| 75 |
+
# Main prediction
|
| 76 |
+
main_pred_idx = np.argmax(probs)
|
| 77 |
+
main_pred_label = label_mappings[main_pred_idx]
|
| 78 |
+
main_pred_prob = probs[main_pred_idx]
|
| 79 |
+
main_description = label_descriptions[main_pred_idx]
|
| 80 |
+
|
| 81 |
+
# Confidence
|
| 82 |
+
if main_pred_prob >= 0.8:
|
| 83 |
+
confidence = "π’ HIGH confidence"
|
| 84 |
+
elif main_pred_prob >= 0.6:
|
| 85 |
+
confidence = "π‘ MEDIUM confidence"
|
| 86 |
+
else:
|
| 87 |
+
confidence = "π΄ LOW confidence"
|
| 88 |
+
|
| 89 |
+
return results, main_pred_label, main_description, confidence
|
| 90 |
+
|
| 91 |
+
except Exception as e:
|
| 92 |
+
return f"Error: {str(e)}", "Error", "", ""
|
| 93 |
+
|
| 94 |
+
# Gradio Interface
|
| 95 |
+
with gr.Blocks(title="Hybrid Code Detector", theme=gr.themes.Soft()) as demo:
|
| 96 |
+
gr.Markdown("# π Hybrid Code Detector")
|
| 97 |
+
gr.Markdown("Classify code as: **Human** π¨βπ» | **Machine** π€ | **Hybrid** π | **Adversarial** βοΈ")
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
code_input = gr.Textbox(
|
| 101 |
+
label="Paste code to analyze",
|
| 102 |
+
placeholder="def hello_world():\n print('Hello, World!')",
|
| 103 |
+
lines=10
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
analyze_btn = gr.Button("Analyze Code", variant="primary", size="lg")
|
| 107 |
+
|
| 108 |
+
with gr.Row():
|
| 109 |
+
with gr.Column():
|
| 110 |
+
results_output = gr.Textbox(label="Detection Results", lines=8)
|
| 111 |
+
confidence_output = gr.Textbox(label="Confidence Level")
|
| 112 |
+
with gr.Column():
|
| 113 |
+
prediction_output = gr.Textbox(label="Primary Prediction")
|
| 114 |
+
description_output = gr.Textbox(label="Characteristics", lines=4)
|
| 115 |
+
|
| 116 |
+
gr.Markdown("### π‘ Examples to Test:")
|
| 117 |
+
examples = [
|
| 118 |
+
["def calc(x):\n # quick hack\n result = x * 2\n if x > 10:\n result += 5\n return result", "Human-like"],
|
| 119 |
+
["def calculate_sum(numbers):\n '''\n Calculate the sum of all numbers in the input list.\n \n Args:\n numbers (List[int]): Input list of numbers\n \n Returns:\n int: Sum of all numbers\n '''\n return sum(numbers)", "AI-like"],
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
gr.Examples(examples=examples, inputs=code_input)
|
| 123 |
+
|
| 124 |
+
analyze_btn.click(
|
| 125 |
+
fn=detect_hybrid_code,
|
| 126 |
+
inputs=code_input,
|
| 127 |
+
outputs=[results_output, prediction_output, description_output, confidence_output]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
demo.launch()
|