Update app.py
Browse files
app.py
CHANGED
|
@@ -3,11 +3,28 @@ import tensorflow as tf
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tf.keras.config.enable_unsafe_deserialization()
|
| 8 |
-
model = tf.keras.models.load_model("model.keras", safe_mode=False)
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
labels = ['pituitary', 'meningioma', 'notumor', 'glioma']
|
| 12 |
|
| 13 |
# Preprocesamiento (ajustado al modelo Deit-Tiny 224x224)
|
|
@@ -33,4 +50,4 @@ interface = gr.Interface(
|
|
| 33 |
description="Clasificador entrenado en 4 categorías: pituitary, meningioma, notumor, glioma"
|
| 34 |
)
|
| 35 |
|
| 36 |
-
interface.launch()
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
+
from transformers import TFDeiTModel
|
| 7 |
+
|
| 8 |
+
backbone = TFDeiTModel.from_pretrained("facebook/deit-tiny-patch16-224")
|
| 9 |
+
|
| 10 |
+
def transpose_channels(x):
|
| 11 |
+
return tf.transpose(x, [0, 3, 1, 2])
|
| 12 |
+
|
| 13 |
+
def deit_forward(x):
|
| 14 |
+
return backbone(pixel_values=x).last_hidden_state[:, 0, :]
|
| 15 |
+
|
| 16 |
tf.keras.config.enable_unsafe_deserialization()
|
|
|
|
| 17 |
|
| 18 |
+
model = tf.keras.models.load_model(
|
| 19 |
+
"model.keras",
|
| 20 |
+
custom_objects={
|
| 21 |
+
"transpose_channels": transpose_channels,
|
| 22 |
+
"deit_forward": deit_forward
|
| 23 |
+
},
|
| 24 |
+
safe_mode=False
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Clases
|
| 28 |
labels = ['pituitary', 'meningioma', 'notumor', 'glioma']
|
| 29 |
|
| 30 |
# Preprocesamiento (ajustado al modelo Deit-Tiny 224x224)
|
|
|
|
| 50 |
description="Clasificador entrenado en 4 categorías: pituitary, meningioma, notumor, glioma"
|
| 51 |
)
|
| 52 |
|
| 53 |
+
interface.launch()
|