Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageFilter | |
| import numpy as np | |
| # from gradio.sketch.run import create | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| "Lustify Lightning": "GraydientPlatformAPI/lustify-lightning", | |
| "Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning", | |
| "Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S", | |
| "SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl" | |
| } | |
| # --- ControlNet and Pipeline Setup (Retained) --- | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ) | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| pipe.to("cuda") | |
| print(pipe) | |
| def load_default_pipeline(): | |
| """仅保留,但当前 Inpaint 逻辑未直接使用,可以删除,但保留以防将来扩展。""" | |
| global pipe | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "GraydientPlatformAPI/lustify-lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| ).to("cuda") | |
| print("Default pipeline loaded!") | |
| def fill_image(prompt, image, model_selection, paste_back): | |
| """ | |
| Handles the fill/repair process for inputs from ImageMask (gr. ImageMask). Applies a default 5% expansion to user-drawn masks here. | |
| """ | |
| global pipe | |
| print(f"Received image: {image}") | |
| if image is None: | |
| yield None, None | |
| return | |
| if model_selection in MODELS: | |
| current_model = pipe.config.get("_name_or_path", "") | |
| target_model = MODELS[model_selection] | |
| if current_model != target_model: | |
| # 释放旧模型显存 | |
| del pipe | |
| torch.cuda.empty_cache() | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| target_model, | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model | |
| ) | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| pipe.to("cuda") | |
| print(f"Loaded new SDXL model: {target_model}") | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(prompt, "cuda", True) | |
| source = image["background"] | |
| # 用户绘制的 mask layer(通常是 RGBA) | |
| mask = image["layers"][0] | |
| # 取 alpha 通道并转为二值 mask(255 表示 mask 区域) | |
| alpha_channel = mask.split()[3] | |
| binary_mask = alpha_channel.point(lambda p: 255 if p > 0 else 0).convert("L") | |
| # ==== 扩大 5%(针对 fill_image 的二值 mask) ==== | |
| expand_px = max(1, int(min(binary_mask.width, binary_mask.height) * 0.05)) | |
| kernel_size = expand_px * 2 + 1 | |
| binary_mask = binary_mask.filter(ImageFilter.MaxFilter(kernel_size)) | |
| # ==== END 扩大 ==== | |
| cnet_image = source.copy() | |
| # 在控制网络输入图上把 mask 区域填黑(以便 ControlNet/pipe 根据此区域生成) | |
| cnet_image.paste(0, (0, 0), binary_mask) | |
| # 调用管线(通常是生成若干中间结果,这里按原逻辑 yield) | |
| for image_out in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| # Inpaint 流程使用 image=cnet_image(原图 masked with black), | |
| # 管道内部应该处理了 mask,但如果 StableDiffusionXLFillPipeline | |
| # 需要显式 mask,这里可能需要调整。根据原代码的命名和逻辑, | |
| # 假定 pipe(image=cnet_image) 适用于此填充流程。 | |
| ): | |
| yield image_out, cnet_image # 这里的 yield 是为了流式输出 | |
| print(f"{model_selection=}") | |
| print(f"{paste_back=}") | |
| # 最后 paste 回原图(如用户选择) | |
| if paste_back: | |
| # image_out 是生成的修复部分 | |
| # cnet_image 在循环中已被用作 ControlNet 输入图(黑块版) | |
| # 这里的 cnet_image 应该更新为 source.copy() 以避免和输入混淆, | |
| # 但遵循原代码逻辑,使用 image_out + source/binary_mask | |
| # 最终结果是 image_out(修复结果),我们将其粘贴回原图 source | |
| # 的非 mask 区域(即只替换 mask 区域) | |
| final_output = source.copy() | |
| image_out_rgba = image_out.convert("RGBA") | |
| # 使用二值 mask 的反转作为 paste 的 mask | |
| inverted_mask = binary_mask.point(lambda p: 255 if p == 0 else 0).convert("L") | |
| # 将 image_out 粘贴到 final_output 中,仅在 binary_mask 为 255 的区域(即修复区域) | |
| final_output.paste(image_out_rgba, (0, 0), binary_mask) | |
| yield cnet_image, final_output | |
| else: | |
| # 如果不 paste back,只返回生成的修复图像 | |
| yield cnet_image, image_out | |
| def clear_result(): | |
| return gr.update(value=None) | |
| def use_output_as_input(output_image): | |
| """ | |
| Receives the output of ImageSlider (image_out, cnet_image) and returns cnet_image as the new input. | |
| """ | |
| return gr.update(value=output_image[0]) | |
| css = """ | |
| .nulgradio-container { | |
| width: 86vw !important; | |
| } | |
| .nulcontain { | |
| overflow-y: scroll !important; | |
| padding: 10px 40px !important; | |
| } | |
| div#component-17 { | |
| height: auto !important; | |
| } | |
| @media screen and (max-width: 600px) { | |
| .img-row{ | |
| display: block !important; | |
| margin-bottom: 20px !important; | |
| } | |
| } | |
| """ | |
| title = """<h1 align="center">Diffusers Image Inpaint</h1> | |
| <div align="center">Upload an image, draw a mask, and enter a prompt to repair/inpaint the masked area.</div> | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <p style="display: flex;gap: 6px;"> | |
| <a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space"> | |
| </a> to skip the queue and enjoy faster inference on the GPU of your choice | |
| </p> | |
| </div> | |
| """ | |
| with gr.Blocks(css=css, fill_height=True) as demo: | |
| gr.Markdown(title) | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| info="Describe what to inpaint the mask with", | |
| lines=3, | |
| ) | |
| with gr.Column(): | |
| model_selection = gr.Dropdown( | |
| choices=list(MODELS.keys()), | |
| value="RealVisXL V5.0 Lightning", | |
| label="Model", | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("Generate") | |
| paste_back = gr.Checkbox(True, label="Paste back original") | |
| with gr.Row(equal_height=False): | |
| input_image = gr.ImageMask( | |
| type="pil", label="Input Image", layers=True, elem_classes="img-row" | |
| ) | |
| result = ImageSlider( | |
| interactive=False, | |
| label="Generated Image", | |
| elem_classes="img-row" | |
| ) | |
| use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
| # --- Event Handlers for Inpaint --- | |
| use_as_input_button.click( | |
| fn=use_output_as_input, | |
| inputs=[result], | |
| outputs=[input_image], | |
| queue=False | |
| ) | |
| # Generates image on button click | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| queue=False, | |
| ).then( | |
| fn=lambda: gr.update(visible=False), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| queue=False, | |
| ).then( | |
| fn=fill_image, | |
| inputs=[prompt, input_image, model_selection, paste_back], | |
| outputs=[result], | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| queue=False, | |
| ) | |
| # Generates image on prompt submit | |
| prompt.submit( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| queue=False, | |
| ).then( | |
| fn=lambda: gr.update(visible=False), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| queue=False, | |
| ).then( | |
| fn=fill_image, | |
| inputs=[prompt, input_image, model_selection, paste_back], | |
| outputs=[result], | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| queue=False, | |
| ) | |
| demo.queue(max_size=10).launch(show_error=True) | |