LPX55's picture
fix: preset prompt persistence
cb1093f verified
raw
history blame
29.8 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_xformers_available
from presets import PRESETS, get_preset_choices, get_preset_info, update_preset_prompt
import os
import sys
import re
import gc
import math
import json # Added json import
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
from copy import deepcopy
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Model configuration
REWRITER_MODEL = "Qwen/Qwen1.5-4B-Chat" # Upgraded to 4B for better JSON handling
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
LOC = os.getenv("QIE")
# Quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
rewriter_model = AutoModelForCausalLM.from_pretrained(
REWRITER_MODEL,
torch_dtype=dtype,
device_map="auto",
quantization_config=bnb_config,
)
def get_fresh_presets():
"""Return a fresh copy of presets to avoid persistence across users"""
return deepcopy(PRESETS)
# Store original presets for reference
ORIGINAL_PRESETS = deepcopy(PRESETS)
# Preload enhancement model at startup
print("🔄 Loading prompt enhancement model...")
rewriter_tokenizer = AutoTokenizer.from_pretrained(REWRITER_MODEL)
print("✅ Enhancement model loaded and ready!")
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
def extract_json_response(model_output: str) -> str:
"""Extract rewritten instruction from potentially messy JSON output"""
# Remove code block markers first
model_output = re.sub(r'```(?:json)?\s*', '', model_output)
try:
# Find the JSON portion in the output
start_idx = model_output.find('{')
end_idx = model_output.rfind('}')
# Fix the condition - check if brackets were found
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
return None
# Expand to the full object including outer braces
end_idx += 1 # Include the closing brace
json_str = model_output[start_idx:end_idx]
# Handle potential markdown or other formatting
json_str = json_str.strip()
# Try to parse JSON directly first
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Direct JSON parsing failed: {e}")
# If direct parsing fails, try cleanup
# Quote keys properly
json_str = re.sub(r'([^{}[\],\s"]+)(?=\s*:)', r'"\1"', json_str)
# Remove any trailing commas that might cause issues
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
# Try parsing again
data = json.loads(json_str)
# Extract rewritten prompt from possible key variations
possible_keys = [
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
"Output", "output", "Enhanced", "enhanced"
]
for key in possible_keys:
if key in data:
return data[key].strip()
# Try nested path
if "Response" in data and "Rewritten" in data["Response"]:
return data["Response"]["Rewritten"].strip()
# Handle nested JSON objects (additional protection)
if isinstance(data, dict):
for value in data.values():
if isinstance(value, dict) and "Rewritten" in value:
return value["Rewritten"].strip()
# Try to find any string value that looks like an instruction
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
if str_values:
return str_values[0].strip()
except Exception as e:
print(f"JSON parse error: {str(e)}")
print(f"Model output was: {model_output}")
return None
def polish_prompt(original_prompt: str) -> str:
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
# Format as Qwen chat
messages = [
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
{"role": "user", "content": original_prompt}
]
text = rewriter_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = rewriter_model.generate(
**model_inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.1,
no_repeat_ngram_size=3,
pad_token_id=rewriter_tokenizer.eos_token_id
)
# Extract and clean response
enhanced = rewriter_tokenizer.decode(
generated_ids[0][model_inputs.input_ids.shape[1]:],
skip_special_tokens=True
).strip()
print(f"Original Prompt: {original_prompt}")
print(f"Model raw output: {enhanced}") # Debug logging
# Try to extract JSON content
rewritten_prompt = extract_json_response(enhanced)
if rewritten_prompt:
# Clean up remaining artifacts
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
return rewritten_prompt
else:
# Fallback: try to extract from code blocks or just return cleaned content
if '```' in enhanced:
parts = enhanced.split('```')
if len(parts) >= 2:
rewritten_prompt = parts[1].strip()
else:
rewritten_prompt = enhanced
else:
rewritten_prompt = enhanced
# Basic cleanup
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
if ': ' in rewritten_prompt:
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load main image editing pipeline
pipe = QwenImageEditPipeline.from_pretrained(
LOC,
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
# weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
weight_name="Qwen-Image-Lightning-4steps-V1.0.safetensors"
)
pipe.fuse_lora()
# if is_xformers_available():
# pipe.enable_xformers_memory_efficient_attention()
# else:
# print("xformers not available")
try:
pipe.enable_vae_slicing()
except Exception as e:
print(f"VAE Slicing Failed: {e}")
def toggle_output_count(preset_type):
"""Control output count slider interactivity and show/hide preset editor"""
if preset_type and preset_type in ORIGINAL_PRESETS:
# When preset is selected, disable manual output count and show editor
preset = ORIGINAL_PRESETS[preset_type]
prompts = preset["prompts"][:4] # Get up to 4 prompts
# Pad prompts to 4 items if needed
while len(prompts) < 4:
prompts.append("")
return (
gr.Group(visible=True),
gr.Slider(interactive=False, value=len([p for p in prompts if p.strip()])), # Count non-empty prompts
prompts[0], prompts[1], prompts[2], prompts[3] # Populate preset prompts
)
else:
# When no preset is selected, enable manual output count and hide editor
return (
gr.Group(visible=False),
gr.Slider(interactive=True), # Enable slider
"", "", "", "" # Clear preset prompts
)
def update_prompt_preview(preset_type, base_prompt):
"""Update the prompt preview display based on selected preset and base prompt"""
if preset_type and preset_type in ORIGINAL_PRESETS:
preset = ORIGINAL_PRESETS[preset_type]
non_empty_prompts = [p for p in preset["prompts"] if p.strip()]
if not non_empty_prompts:
return "No prompts defined. Please enter at least one prompt in the editor."
preview_text = f"**Preset: {preset_type}**\n\n"
preview_text += f"*{preset['description']}*\n\n"
preview_text += f"**Generating {len(non_empty_prompts)} image{'s' if len(non_empty_prompts) > 1 else ''}:**\n"
for i, preset_prompt in enumerate(non_empty_prompts, 1):
full_prompt = f"{base_prompt}, {preset_prompt}"
preview_text += f"{i}. {full_prompt}\n"
return preview_text
else:
return "Select a preset above to see how your base prompt will be modified for batch generation."
def update_preset_prompt_textbox(preset_type, prompt_1, prompt_2, prompt_3, prompt_4):
"""Update preset prompts based on user input - now works with session copy"""
if preset_type and preset_type in ORIGINAL_PRESETS:
# Update each prompt in the preset copy (this won't persist globally)
new_prompts = [prompt_1, prompt_2, prompt_3, prompt_4]
# Create a working copy for preview purposes
working_presets = get_fresh_presets()
for i, new_prompt in enumerate(new_prompts):
if i < len(working_presets[preset_type]["prompts"]):
working_presets[preset_type]["prompts"][i] = new_prompt.strip()
else:
working_presets[preset_type]["prompts"].append(new_prompt.strip())
# Return updated preset info for preview
return update_prompt_preview_with_presets(preset_type, "your subject", working_presets)
return "Select a preset first to edit its prompts."
def update_prompt_preview_with_presets(preset_type, base_prompt, custom_presets):
"""Update the prompt preview display with custom presets"""
if preset_type and preset_type in custom_presets:
preset = custom_presets[preset_type]
non_empty_prompts = [p for p in preset["prompts"] if p.strip()]
if not non_empty_prompts:
return "No prompts defined. Please enter at least one prompt in the editor."
preview_text = f"**Preset: {preset_type}**\n\n"
preview_text += f"*{preset['description']}*\n\n"
preview_text += f"**Generating {len(non_empty_prompts)} image{'s' if len(non_empty_prompts) > 1 else ''}:**\n"
for i, preset_prompt in enumerate(non_empty_prompts, 1):
full_prompt = f"{base_prompt}, {preset_prompt}"
preview_text += f"{i}. {full_prompt}\n"
return preview_text
else:
return "Select a preset above to see how your base prompt will be modified for batch generation."
@spaces.GPU()
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=4.0,
num_inference_steps=4,
rewrite_prompt=True,
num_images_per_prompt=1,
preset_type=None,
progress=gr.Progress(track_tqdm=True),
):
"""Image editing endpoint with optimized prompt handling - now uses fresh presets"""
# Resize image to max 1024px on longest side
def resize_image(pil_image, max_size=1024):
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
try:
if pil_image is None:
return pil_image
width, height = pil_image.size
max_dimension = max(width, height)
if max_dimension <= max_size:
return pil_image # No resize needed
# Calculate new dimensions maintaining aspect ratio
scale = max_size / max_dimension
new_width = int(width * scale)
new_height = int(height * scale)
# Resize image
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
return resized_image
except Exception as e:
print(f"⚠️ Image resize failed: {e}")
return pil_image # Return original if resize fails
# Add noise function for batch variation
def add_noise_to_image(pil_image, noise_level=0.001):
"""Add slight noise to image to create variation in outputs"""
try:
if pil_image is None:
return pil_image
img_array = np.array(pil_image).astype(np.float32) / 255.0
noise = np.random.normal(0, noise_level, img_array.shape)
noisy_array = img_array + noise
# Clip values to valid range
noisy_array = np.clip(noisy_array, 0, 1)
# Convert back to PIL
noisy_array = (noisy_array * 255).astype(np.uint8)
return Image.fromarray(noisy_array)
except Exception as e:
print(f"Warning: Could not add noise to image: {e}")
return pil_image # Return original if noise addition fails
# Get fresh presets for this session
session_presets = get_fresh_presets()
# Resize input image first
image = resize_image(image, max_size=1024)
original_prompt = prompt
prompt_info = ""
# Handle preset batch generation
if preset_type and preset_type in session_presets:
preset = session_presets[preset_type]
# Filter out empty prompts
non_empty_preset_prompts = [p for p in preset["prompts"] if p.strip()]
if non_empty_preset_prompts:
batch_prompts = [f"{original_prompt}, {preset_prompt}" for preset_prompt in non_empty_preset_prompts]
num_images_per_prompt = len(non_empty_preset_prompts) # Use actual count of non-empty prompts
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #2196F3; background: #f0f8ff'>"
f"<h4 style='margin-top: 0;'>🎨 Preset: {preset_type}</h4>"
f"<p>{preset['description']}</p>"
f"<p><strong>Base Prompt:</strong> {original_prompt}</p>"
f"<p>Generating {len(non_empty_preset_prompts)} image{'s' if len(non_empty_preset_prompts) > 1 else ''}</p>"
f"</div>"
)
print(f"Using preset: {preset_type} with {len(batch_prompts)} variations")
else:
# Fallback to manual if no valid prompts
batch_prompts = [prompt]
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
f"<h4 style='margin-top: 0;'>⚠️ Invalid Preset</h4>"
f"<p>No valid prompts found. Using manual prompt.</p>"
f"<p><strong>Prompt:</strong> {original_prompt}</p>"
f"</div>"
)
else:
batch_prompts = [prompt] # Single prompt in list
# Handle regular prompt rewriting
if rewrite_prompt:
try:
enhanced_instruction = polish_prompt(original_prompt)
if enhanced_instruction and enhanced_instruction != original_prompt:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
f"<p><strong>Original:</strong> {original_prompt}</p>"
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
f"</div>"
)
batch_prompts = [enhanced_instruction]
else:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
f"<p>No enhancement applied or enhancement failed</p>"
f"</div>"
)
except Exception as e:
print(f"Prompt enhancement error: {str(e)}") # Debug logging
gr.Warning(f"Prompt enhancement failed: {str(e)}")
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
f"</div>"
)
else:
prompt_info = (
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
f"<p>{original_prompt}</p>"
f"</div>"
)
# Set base seed for reproducibility
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
try:
edited_images = []
# Generate images for each prompt in the batch
for i, current_prompt in enumerate(batch_prompts):
# Create unique seed for each image
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
# Add slight noise to the image for variation (except for first image to maintain base)
if i == 0 and len(batch_prompts) > 1:
input_image = image
else:
input_image = add_noise_to_image(image, noise_level=0.001 + i*0.003)
# Slightly vary guidance scale for each image
varied_guidance = true_guidance_scale + random.uniform(-0.1, 0.1)
varied_guidance = max(1.0, min(10.0, varied_guidance))
# Generate single image
result = pipe(
image=input_image,
prompt=current_prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=varied_guidance,
num_images_per_prompt=1
).images
edited_images.extend(result)
print(f"Generated image {i+1}/{len(batch_prompts)} with prompt: {current_prompt[:75]}...")
# Clear cache after generation
# if device == "cuda":
# torch.cuda.empty_cache()
# gc.collect()
return edited_images, base_seed, prompt_info
except Exception as e:
# Clear cache on error
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
gr.Error(f"Image generation failed: {str(e)}")
return [], base_seed, (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
f"<p>{str(e)[:200]}</p>"
f"</div>"
)
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
preset_prompts_state = gr.State(value=[])
# preset_prompts_state = gr.State(value=["", "", "", ""])
gr.Markdown("""
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
<p>✨ 4-step inferencing with lightx2v's LoRA.</p>
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation, 🎨 Preset Batches</p>
</div>
""")
with gr.Row(equal_height=True):
# Input Column
with gr.Column(scale=1):
input_image = gr.Image(
label="Source Image",
type="pil",
height=300
)
prompt = gr.Textbox(
label="Edit Instructions / Base Prompt",
placeholder="e.g. Replace the background with a beach sunset... When a preset is selected, use as the base prompt, e.g. the lamborghini",
lines=2,
max_lines=4,
scale=2
)
preset_dropdown = gr.Dropdown(
choices=get_preset_choices(),
value=None,
label="Preset Batch Generation",
interactive=True
)
# Add editable preset prompts (initially hidden)
preset_editor = gr.Group(visible=False)
with preset_editor:
gr.Markdown("### 🎨 Edit Preset Prompts")
preset_prompt_1 = gr.Textbox(label="Prompt 1", lines=1, value="")
preset_prompt_2 = gr.Textbox(label="Prompt 2", lines=1, value="")
preset_prompt_3 = gr.Textbox(label="Prompt 3", lines=1, value="")
preset_prompt_4 = gr.Textbox(label="Prompt 4", lines=1, value="")
update_preset_button = gr.Button("Update Preset", variant="secondary")
rewrite_toggle = gr.Checkbox(
label="Enable Prompt Enhancement",
value=True,
interactive=True
)
# Add prompt preview component
prompt_preview = gr.Textbox(
label="📋 Prompt Preview",
interactive=False,
lines=6,
max_lines=10,
value="Enter a base prompt and select a preset above to see how your prompt will be modified for batch generation.",
placeholder="Prompt preview will appear here..."
)
run_button = gr.Button(
"Generate Edit(s)",
variant="primary"
)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Random Seed",
value=True
)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=2,
maximum=16,
step=1,
value=4
)
num_images_per_prompt = gr.Slider(
label="Output Count (Manual)",
minimum=1,
maximum=4,
step=1,
value=2,
interactive=True
)
# Output Column
with gr.Column(scale=2):
result = gr.Gallery(
label="Edited Images",
columns=lambda x: min(x, 2),
height=500,
object_fit="cover",
preview=True
)
prompt_info = gr.HTML(
value="<div style='padding:15px; margin-top:15px'>"
"Prompt details will appear after generation. Ability to edit Preset Prompts on the fly will be implemented shortly.</div>"
)
# Fix the show_preset_editor function to use ORIGINAL_PRESETS:
def show_preset_editor(preset_type):
if preset_type and preset_type in ORIGINAL_PRESETS: # Changed from PRESETS to ORIGINAL_PRESETS
preset = ORIGINAL_PRESETS[preset_type]
prompts = preset["prompts"]
# Pad prompts to 4 items if needed
while len(prompts) < 4:
prompts.append("")
return gr.Group(visible=True), prompts[0], prompts[1], prompts[2], prompts[3]
return gr.Group(visible=False), "", "", "", ""
# Fix the update_preset_count function to use ORIGINAL_PRESETS:
def update_preset_count(preset_type, prompt_1, prompt_2, prompt_3, prompt_4):
"""Update the output count slider based on non-empty preset prompts"""
if preset_type and preset_type in ORIGINAL_PRESETS: # Changed from PRESETS to ORIGINAL_PRESETS
non_empty_count = len([p for p in [prompt_1, prompt_2, prompt_3, prompt_4] if p.strip()])
return gr.Slider(value=max(1, min(4, non_empty_count)), interactive=False)
return gr.Slider(interactive=True)
# Update the preset_dropdown.change handlers to use ORIGINAL_PRESETS
preset_dropdown.change(
fn=toggle_output_count,
inputs=preset_dropdown,
outputs=[preset_editor, num_images_per_prompt, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4]
)
preset_dropdown.change(
fn=update_prompt_preview,
inputs=[preset_dropdown, prompt],
outputs=prompt_preview
)
preset_prompt_1.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_2.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_3.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_4.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
prompt.change(
fn=update_prompt_preview,
inputs=[preset_dropdown, prompt],
outputs=prompt_preview
)
update_preset_button.click(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
# Set up processing
inputs = [
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
num_images_per_prompt,
preset_dropdown
]
outputs = [result, seed, prompt_info]
run_button.click(
fn=infer,
inputs=inputs,
outputs=outputs
)
prompt.submit(
fn=infer,
inputs=inputs,
outputs=outputs
)
demo.queue(max_size=5).launch()