Spaces:
Running
on
Zero
Running
on
Zero
chore: implement presets in main app (#3)
Browse files- chore: implement presets in main app (2bb4b9cb2ae2a8a09632fda67260cea229ad3216)
- app_local.py +116 -143
app_local.py
CHANGED
|
@@ -6,6 +6,8 @@ import spaces
|
|
| 6 |
from PIL import Image
|
| 7 |
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
| 8 |
from diffusers.utils import is_xformers_available
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
import sys
|
| 11 |
import re
|
|
@@ -85,7 +87,6 @@ Please provide the rewritten instruction in a clean `json` format as:
|
|
| 85 |
}
|
| 86 |
'''
|
| 87 |
|
| 88 |
-
|
| 89 |
def extract_json_response(model_output: str) -> str:
|
| 90 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
| 91 |
# Remove code block markers first
|
|
@@ -94,19 +95,15 @@ def extract_json_response(model_output: str) -> str:
|
|
| 94 |
# Find the JSON portion in the output
|
| 95 |
start_idx = model_output.find('{')
|
| 96 |
end_idx = model_output.rfind('}')
|
| 97 |
-
|
| 98 |
# Fix the condition - check if brackets were found
|
| 99 |
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
|
| 100 |
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
|
| 101 |
return None
|
| 102 |
-
|
| 103 |
# Expand to the full object including outer braces
|
| 104 |
end_idx += 1 # Include the closing brace
|
| 105 |
json_str = model_output[start_idx:end_idx]
|
| 106 |
-
|
| 107 |
# Handle potential markdown or other formatting
|
| 108 |
json_str = json_str.strip()
|
| 109 |
-
|
| 110 |
# Try to parse JSON directly first
|
| 111 |
try:
|
| 112 |
data = json.loads(json_str)
|
|
@@ -119,7 +116,6 @@ def extract_json_response(model_output: str) -> str:
|
|
| 119 |
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
| 120 |
# Try parsing again
|
| 121 |
data = json.loads(json_str)
|
| 122 |
-
|
| 123 |
# Extract rewritten prompt from possible key variations
|
| 124 |
possible_keys = [
|
| 125 |
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
|
|
@@ -128,45 +124,36 @@ def extract_json_response(model_output: str) -> str:
|
|
| 128 |
for key in possible_keys:
|
| 129 |
if key in data:
|
| 130 |
return data[key].strip()
|
| 131 |
-
|
| 132 |
# Try nested path
|
| 133 |
if "Response" in data and "Rewritten" in data["Response"]:
|
| 134 |
return data["Response"]["Rewritten"].strip()
|
| 135 |
-
|
| 136 |
# Handle nested JSON objects (additional protection)
|
| 137 |
if isinstance(data, dict):
|
| 138 |
for value in data.values():
|
| 139 |
if isinstance(value, dict) and "Rewritten" in value:
|
| 140 |
return value["Rewritten"].strip()
|
| 141 |
-
|
| 142 |
# Try to find any string value that looks like an instruction
|
| 143 |
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
|
| 144 |
if str_values:
|
| 145 |
return str_values[0].strip()
|
| 146 |
-
|
| 147 |
except Exception as e:
|
| 148 |
print(f"JSON parse error: {str(e)}")
|
| 149 |
print(f"Model output was: {model_output}")
|
| 150 |
return None
|
| 151 |
|
| 152 |
-
|
| 153 |
def polish_prompt(original_prompt: str) -> str:
|
| 154 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
| 155 |
-
|
| 156 |
# Format as Qwen chat
|
| 157 |
messages = [
|
| 158 |
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
|
| 159 |
{"role": "user", "content": original_prompt}
|
| 160 |
]
|
| 161 |
-
|
| 162 |
text = rewriter_tokenizer.apply_chat_template(
|
| 163 |
messages,
|
| 164 |
tokenize=False,
|
| 165 |
add_generation_prompt=True
|
| 166 |
)
|
| 167 |
-
|
| 168 |
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
|
| 169 |
-
|
| 170 |
with torch.no_grad():
|
| 171 |
generated_ids = rewriter_model.generate(
|
| 172 |
**model_inputs,
|
|
@@ -178,18 +165,14 @@ def polish_prompt(original_prompt: str) -> str:
|
|
| 178 |
no_repeat_ngram_size=3,
|
| 179 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
| 180 |
)
|
| 181 |
-
|
| 182 |
# Extract and clean response
|
| 183 |
enhanced = rewriter_tokenizer.decode(
|
| 184 |
generated_ids[0][model_inputs.input_ids.shape[1]:],
|
| 185 |
skip_special_tokens=True
|
| 186 |
).strip()
|
| 187 |
-
|
| 188 |
print(f"Model raw output: {enhanced}") # Debug logging
|
| 189 |
-
|
| 190 |
# Try to extract JSON content
|
| 191 |
rewritten_prompt = extract_json_response(enhanced)
|
| 192 |
-
|
| 193 |
if rewritten_prompt:
|
| 194 |
# Clean up remaining artifacts
|
| 195 |
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
|
|
@@ -205,12 +188,10 @@ def polish_prompt(original_prompt: str) -> str:
|
|
| 205 |
rewritten_prompt = enhanced
|
| 206 |
else:
|
| 207 |
rewritten_prompt = enhanced
|
| 208 |
-
|
| 209 |
# Basic cleanup
|
| 210 |
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
|
| 211 |
if ': ' in rewritten_prompt:
|
| 212 |
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
|
| 213 |
-
|
| 214 |
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
|
| 215 |
|
| 216 |
# Scheduler configuration for Lightning
|
|
@@ -231,6 +212,7 @@ scheduler_config = {
|
|
| 231 |
"use_karras_sigmas": False,
|
| 232 |
}
|
| 233 |
|
|
|
|
| 234 |
# Initialize scheduler with Lightning config
|
| 235 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 236 |
|
|
@@ -254,15 +236,7 @@ if is_xformers_available():
|
|
| 254 |
else:
|
| 255 |
print("xformers not available")
|
| 256 |
|
| 257 |
-
|
| 258 |
-
# """Clear enhancement model from memory"""
|
| 259 |
-
# global rewriter_tokenizer, rewriter_model
|
| 260 |
-
# if rewriter_model:
|
| 261 |
-
# del rewriter_tokenizer, rewriter_model
|
| 262 |
-
# rewriter_tokenizer = None
|
| 263 |
-
# rewriter_model = None
|
| 264 |
-
# torch.cuda.empty_cache()
|
| 265 |
-
# gc.collect()
|
| 266 |
@spaces.GPU()
|
| 267 |
def infer(
|
| 268 |
image,
|
|
@@ -273,33 +247,28 @@ def infer(
|
|
| 273 |
num_inference_steps=8,
|
| 274 |
rewrite_prompt=True,
|
| 275 |
num_images_per_prompt=1,
|
|
|
|
| 276 |
progress=gr.Progress(track_tqdm=True),
|
| 277 |
):
|
| 278 |
"""Image editing endpoint with optimized prompt handling"""
|
| 279 |
-
|
| 280 |
# Resize image to max 1024px on longest side
|
| 281 |
def resize_image(pil_image, max_size=1024):
|
| 282 |
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
|
| 283 |
try:
|
| 284 |
if pil_image is None:
|
| 285 |
return pil_image
|
| 286 |
-
|
| 287 |
width, height = pil_image.size
|
| 288 |
max_dimension = max(width, height)
|
| 289 |
-
|
| 290 |
if max_dimension <= max_size:
|
| 291 |
return pil_image # No resize needed
|
| 292 |
-
|
| 293 |
# Calculate new dimensions maintaining aspect ratio
|
| 294 |
scale = max_size / max_dimension
|
| 295 |
new_width = int(width * scale)
|
| 296 |
new_height = int(height * scale)
|
| 297 |
-
|
| 298 |
# Resize image
|
| 299 |
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
| 300 |
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
|
| 301 |
return resized_image
|
| 302 |
-
|
| 303 |
except Exception as e:
|
| 304 |
print(f"⚠️ Image resize failed: {e}")
|
| 305 |
return pil_image # Return original if resize fails
|
|
@@ -310,7 +279,6 @@ def infer(
|
|
| 310 |
try:
|
| 311 |
if pil_image is None:
|
| 312 |
return pil_image
|
| 313 |
-
|
| 314 |
img_array = np.array(pil_image).astype(np.float32) / 255.0
|
| 315 |
noise = np.random.normal(0, noise_level, img_array.shape)
|
| 316 |
noisy_array = img_array + noise
|
|
@@ -322,96 +290,105 @@ def infer(
|
|
| 322 |
except Exception as e:
|
| 323 |
print(f"Warning: Could not add noise to image: {e}")
|
| 324 |
return pil_image # Return original if noise addition fails
|
| 325 |
-
|
| 326 |
# Resize input image first
|
| 327 |
image = resize_image(image, max_size=1024)
|
| 328 |
-
|
| 329 |
original_prompt = prompt
|
| 330 |
prompt_info = ""
|
| 331 |
|
| 332 |
-
# Handle
|
| 333 |
-
if
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
prompt_info = (
|
| 347 |
-
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #
|
| 348 |
-
f"<h4 style='margin-top: 0;'
|
| 349 |
-
f"<p>
|
| 350 |
f"</div>"
|
| 351 |
)
|
| 352 |
-
|
| 353 |
-
print(f"Prompt enhancement error: {str(e)}") # Debug logging
|
| 354 |
-
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
| 355 |
prompt_info = (
|
| 356 |
-
f"<div style='margin:10px; padding:
|
| 357 |
-
f"<h4 style='margin-top: 0;'
|
| 358 |
-
f"<p>
|
| 359 |
f"</div>"
|
| 360 |
)
|
| 361 |
-
else:
|
| 362 |
-
prompt_info = (
|
| 363 |
-
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
|
| 364 |
-
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
|
| 365 |
-
f"<p>{original_prompt}</p>"
|
| 366 |
-
f"</div>"
|
| 367 |
-
)
|
| 368 |
|
| 369 |
# Set base seed for reproducibility
|
| 370 |
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
|
| 371 |
|
| 372 |
try:
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
true_cfg_scale=varied_guidance,
|
| 395 |
-
num_images_per_prompt=1
|
| 396 |
-
).images
|
| 397 |
-
edited_images.extend(result)
|
| 398 |
-
else:
|
| 399 |
-
# Single image generation (unchanged)
|
| 400 |
-
generator = torch.Generator(device=device).manual_seed(base_seed)
|
| 401 |
-
edited_images = pipe(
|
| 402 |
-
image=image,
|
| 403 |
-
prompt=prompt,
|
| 404 |
negative_prompt=" ",
|
| 405 |
num_inference_steps=num_inference_steps,
|
| 406 |
generator=generator,
|
| 407 |
-
true_cfg_scale=
|
| 408 |
-
num_images_per_prompt=
|
| 409 |
).images
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
# Clear cache after generation
|
| 412 |
if device == "cuda":
|
| 413 |
torch.cuda.empty_cache()
|
| 414 |
gc.collect()
|
|
|
|
| 415 |
return edited_images, base_seed, prompt_info
|
| 416 |
except Exception as e:
|
| 417 |
# Clear cache on error
|
|
@@ -425,13 +402,14 @@ def infer(
|
|
| 425 |
f"<p>{str(e)[:200]}</p>"
|
| 426 |
f"</div>"
|
| 427 |
)
|
| 428 |
-
|
|
|
|
| 429 |
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
| 430 |
gr.Markdown("""
|
| 431 |
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
|
| 432 |
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
|
| 433 |
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
|
| 434 |
-
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation</p>
|
| 435 |
</div>
|
| 436 |
""")
|
| 437 |
|
|
@@ -439,65 +417,72 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
| 439 |
# Input Column
|
| 440 |
with gr.Column(scale=1):
|
| 441 |
input_image = gr.Image(
|
| 442 |
-
label="Source Image",
|
| 443 |
-
type="pil",
|
| 444 |
height=300
|
| 445 |
)
|
| 446 |
prompt = gr.Textbox(
|
| 447 |
-
label="Edit Instructions",
|
| 448 |
placeholder="e.g. Replace the background with a beach sunset...",
|
| 449 |
lines=2,
|
| 450 |
max_lines=4
|
| 451 |
)
|
| 452 |
|
|
|
|
| 453 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
rewrite_toggle = gr.Checkbox(
|
| 455 |
-
label="Enable Prompt Enhancement",
|
| 456 |
value=True,
|
| 457 |
interactive=True
|
| 458 |
)
|
| 459 |
run_button = gr.Button(
|
| 460 |
-
"Generate Edits",
|
| 461 |
-
variant="primary",
|
| 462 |
min_width=120
|
| 463 |
)
|
| 464 |
|
| 465 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 466 |
with gr.Row():
|
| 467 |
seed = gr.Slider(
|
| 468 |
-
label="Seed",
|
| 469 |
-
minimum=0,
|
| 470 |
-
maximum=MAX_SEED,
|
| 471 |
-
step=1,
|
| 472 |
value=42
|
| 473 |
)
|
| 474 |
randomize_seed = gr.Checkbox(
|
| 475 |
-
label="Random Seed",
|
| 476 |
value=True
|
| 477 |
)
|
| 478 |
with gr.Row():
|
| 479 |
true_guidance_scale = gr.Slider(
|
| 480 |
-
label="Guidance Scale",
|
| 481 |
-
minimum=1.0,
|
| 482 |
-
maximum=10.0,
|
| 483 |
-
step=0.1,
|
| 484 |
value=4.0
|
| 485 |
)
|
| 486 |
num_inference_steps = gr.Slider(
|
| 487 |
-
label="Inference Steps",
|
| 488 |
-
minimum=4,
|
| 489 |
-
maximum=16,
|
| 490 |
-
step=1,
|
| 491 |
value=8
|
| 492 |
)
|
| 493 |
num_images_per_prompt = gr.Slider(
|
| 494 |
-
label="Output Count",
|
| 495 |
-
minimum=1,
|
| 496 |
-
maximum=4,
|
| 497 |
-
step=1,
|
| 498 |
value=2
|
| 499 |
)
|
| 500 |
-
|
| 501 |
# Output Column
|
| 502 |
with gr.Column(scale=2):
|
| 503 |
result = gr.Gallery(
|
|
@@ -512,18 +497,6 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
| 512 |
"Prompt details will appear after generation</div>"
|
| 513 |
)
|
| 514 |
|
| 515 |
-
# # Examples
|
| 516 |
-
# gr.Examples(
|
| 517 |
-
# examples=[
|
| 518 |
-
# "Change the background scene to a rooftop bar at night",
|
| 519 |
-
# "Transform to pixel art style with 8-bit graphics",
|
| 520 |
-
# "Replace all text with 'Qwen AI' in futuristic font"
|
| 521 |
-
# ],
|
| 522 |
-
# inputs=[prompt],
|
| 523 |
-
# label="Sample Instructions",
|
| 524 |
-
# cache_examples=True
|
| 525 |
-
# )
|
| 526 |
-
|
| 527 |
# Set up processing
|
| 528 |
inputs = [
|
| 529 |
input_image,
|
|
@@ -533,9 +506,9 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
| 533 |
true_guidance_scale,
|
| 534 |
num_inference_steps,
|
| 535 |
rewrite_toggle,
|
| 536 |
-
num_images_per_prompt
|
|
|
|
| 537 |
]
|
| 538 |
-
|
| 539 |
outputs = [result, seed, prompt_info]
|
| 540 |
|
| 541 |
run_button.click(
|
|
@@ -543,11 +516,11 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
| 543 |
inputs=inputs,
|
| 544 |
outputs=outputs
|
| 545 |
)
|
| 546 |
-
|
| 547 |
prompt.submit(
|
| 548 |
fn=infer,
|
| 549 |
inputs=inputs,
|
| 550 |
outputs=outputs
|
| 551 |
)
|
| 552 |
|
|
|
|
| 553 |
demo.queue(max_size=5).launch()
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
| 8 |
from diffusers.utils import is_xformers_available
|
| 9 |
+
from presets import PRESETS, get_preset_choices, get_preset_info
|
| 10 |
+
|
| 11 |
import os
|
| 12 |
import sys
|
| 13 |
import re
|
|
|
|
| 87 |
}
|
| 88 |
'''
|
| 89 |
|
|
|
|
| 90 |
def extract_json_response(model_output: str) -> str:
|
| 91 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
| 92 |
# Remove code block markers first
|
|
|
|
| 95 |
# Find the JSON portion in the output
|
| 96 |
start_idx = model_output.find('{')
|
| 97 |
end_idx = model_output.rfind('}')
|
|
|
|
| 98 |
# Fix the condition - check if brackets were found
|
| 99 |
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
|
| 100 |
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
|
| 101 |
return None
|
|
|
|
| 102 |
# Expand to the full object including outer braces
|
| 103 |
end_idx += 1 # Include the closing brace
|
| 104 |
json_str = model_output[start_idx:end_idx]
|
|
|
|
| 105 |
# Handle potential markdown or other formatting
|
| 106 |
json_str = json_str.strip()
|
|
|
|
| 107 |
# Try to parse JSON directly first
|
| 108 |
try:
|
| 109 |
data = json.loads(json_str)
|
|
|
|
| 116 |
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
| 117 |
# Try parsing again
|
| 118 |
data = json.loads(json_str)
|
|
|
|
| 119 |
# Extract rewritten prompt from possible key variations
|
| 120 |
possible_keys = [
|
| 121 |
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
|
|
|
|
| 124 |
for key in possible_keys:
|
| 125 |
if key in data:
|
| 126 |
return data[key].strip()
|
|
|
|
| 127 |
# Try nested path
|
| 128 |
if "Response" in data and "Rewritten" in data["Response"]:
|
| 129 |
return data["Response"]["Rewritten"].strip()
|
|
|
|
| 130 |
# Handle nested JSON objects (additional protection)
|
| 131 |
if isinstance(data, dict):
|
| 132 |
for value in data.values():
|
| 133 |
if isinstance(value, dict) and "Rewritten" in value:
|
| 134 |
return value["Rewritten"].strip()
|
|
|
|
| 135 |
# Try to find any string value that looks like an instruction
|
| 136 |
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
|
| 137 |
if str_values:
|
| 138 |
return str_values[0].strip()
|
|
|
|
| 139 |
except Exception as e:
|
| 140 |
print(f"JSON parse error: {str(e)}")
|
| 141 |
print(f"Model output was: {model_output}")
|
| 142 |
return None
|
| 143 |
|
|
|
|
| 144 |
def polish_prompt(original_prompt: str) -> str:
|
| 145 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
|
|
|
| 146 |
# Format as Qwen chat
|
| 147 |
messages = [
|
| 148 |
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
|
| 149 |
{"role": "user", "content": original_prompt}
|
| 150 |
]
|
|
|
|
| 151 |
text = rewriter_tokenizer.apply_chat_template(
|
| 152 |
messages,
|
| 153 |
tokenize=False,
|
| 154 |
add_generation_prompt=True
|
| 155 |
)
|
|
|
|
| 156 |
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
|
|
|
|
| 157 |
with torch.no_grad():
|
| 158 |
generated_ids = rewriter_model.generate(
|
| 159 |
**model_inputs,
|
|
|
|
| 165 |
no_repeat_ngram_size=3,
|
| 166 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
| 167 |
)
|
|
|
|
| 168 |
# Extract and clean response
|
| 169 |
enhanced = rewriter_tokenizer.decode(
|
| 170 |
generated_ids[0][model_inputs.input_ids.shape[1]:],
|
| 171 |
skip_special_tokens=True
|
| 172 |
).strip()
|
|
|
|
| 173 |
print(f"Model raw output: {enhanced}") # Debug logging
|
|
|
|
| 174 |
# Try to extract JSON content
|
| 175 |
rewritten_prompt = extract_json_response(enhanced)
|
|
|
|
| 176 |
if rewritten_prompt:
|
| 177 |
# Clean up remaining artifacts
|
| 178 |
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
|
|
|
|
| 188 |
rewritten_prompt = enhanced
|
| 189 |
else:
|
| 190 |
rewritten_prompt = enhanced
|
|
|
|
| 191 |
# Basic cleanup
|
| 192 |
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
|
| 193 |
if ': ' in rewritten_prompt:
|
| 194 |
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
|
|
|
|
| 195 |
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
|
| 196 |
|
| 197 |
# Scheduler configuration for Lightning
|
|
|
|
| 212 |
"use_karras_sigmas": False,
|
| 213 |
}
|
| 214 |
|
| 215 |
+
|
| 216 |
# Initialize scheduler with Lightning config
|
| 217 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 218 |
|
|
|
|
| 236 |
else:
|
| 237 |
print("xformers not available")
|
| 238 |
|
| 239 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
@spaces.GPU()
|
| 241 |
def infer(
|
| 242 |
image,
|
|
|
|
| 247 |
num_inference_steps=8,
|
| 248 |
rewrite_prompt=True,
|
| 249 |
num_images_per_prompt=1,
|
| 250 |
+
preset_type=None, # New parameter for presets
|
| 251 |
progress=gr.Progress(track_tqdm=True),
|
| 252 |
):
|
| 253 |
"""Image editing endpoint with optimized prompt handling"""
|
|
|
|
| 254 |
# Resize image to max 1024px on longest side
|
| 255 |
def resize_image(pil_image, max_size=1024):
|
| 256 |
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
|
| 257 |
try:
|
| 258 |
if pil_image is None:
|
| 259 |
return pil_image
|
|
|
|
| 260 |
width, height = pil_image.size
|
| 261 |
max_dimension = max(width, height)
|
|
|
|
| 262 |
if max_dimension <= max_size:
|
| 263 |
return pil_image # No resize needed
|
|
|
|
| 264 |
# Calculate new dimensions maintaining aspect ratio
|
| 265 |
scale = max_size / max_dimension
|
| 266 |
new_width = int(width * scale)
|
| 267 |
new_height = int(height * scale)
|
|
|
|
| 268 |
# Resize image
|
| 269 |
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
| 270 |
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
|
| 271 |
return resized_image
|
|
|
|
| 272 |
except Exception as e:
|
| 273 |
print(f"⚠️ Image resize failed: {e}")
|
| 274 |
return pil_image # Return original if resize fails
|
|
|
|
| 279 |
try:
|
| 280 |
if pil_image is None:
|
| 281 |
return pil_image
|
|
|
|
| 282 |
img_array = np.array(pil_image).astype(np.float32) / 255.0
|
| 283 |
noise = np.random.normal(0, noise_level, img_array.shape)
|
| 284 |
noisy_array = img_array + noise
|
|
|
|
| 290 |
except Exception as e:
|
| 291 |
print(f"Warning: Could not add noise to image: {e}")
|
| 292 |
return pil_image # Return original if noise addition fails
|
| 293 |
+
|
| 294 |
# Resize input image first
|
| 295 |
image = resize_image(image, max_size=1024)
|
|
|
|
| 296 |
original_prompt = prompt
|
| 297 |
prompt_info = ""
|
| 298 |
|
| 299 |
+
# Handle preset batch generation
|
| 300 |
+
if preset_type and preset_type in PRESETS:
|
| 301 |
+
preset = PRESETS[preset_type]
|
| 302 |
+
batch_prompts = [f"{original_prompt}, {preset_prompt}" for preset_prompt in preset["prompts"]]
|
| 303 |
+
num_images_per_prompt = preset["count"]
|
| 304 |
+
prompt_info = (
|
| 305 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #2196F3; background: #f0f8ff'>"
|
| 306 |
+
f"<h4 style='margin-top: 0;'>🎨 Preset: {preset_type}</h4>"
|
| 307 |
+
f"<p>{preset['description']}</p>"
|
| 308 |
+
f"<p><strong>Base Prompt:</strong> {original_prompt}</p>"
|
| 309 |
+
f"</div>"
|
| 310 |
+
)
|
| 311 |
+
print(f"Using preset: {preset_type} with {len(batch_prompts)} variations")
|
| 312 |
+
else:
|
| 313 |
+
batch_prompts = [prompt] # Single prompt in list
|
| 314 |
+
|
| 315 |
+
# Handle regular prompt rewriting
|
| 316 |
+
if rewrite_prompt:
|
| 317 |
+
try:
|
| 318 |
+
enhanced_instruction = polish_prompt(original_prompt)
|
| 319 |
+
if enhanced_instruction and enhanced_instruction != original_prompt:
|
| 320 |
+
prompt_info = (
|
| 321 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
|
| 322 |
+
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
|
| 323 |
+
f"<p><strong>Original:</strong> {original_prompt}</p>"
|
| 324 |
+
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
|
| 325 |
+
f"</div>"
|
| 326 |
+
)
|
| 327 |
+
batch_prompts = [enhanced_instruction]
|
| 328 |
+
else:
|
| 329 |
+
prompt_info = (
|
| 330 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
|
| 331 |
+
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
|
| 332 |
+
f"<p>No enhancement applied or enhancement failed</p>"
|
| 333 |
+
f"</div>"
|
| 334 |
+
)
|
| 335 |
+
except Exception as e:
|
| 336 |
+
print(f"Prompt enhancement error: {str(e)}") # Debug logging
|
| 337 |
+
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
| 338 |
prompt_info = (
|
| 339 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
|
| 340 |
+
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
|
| 341 |
+
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
|
| 342 |
f"</div>"
|
| 343 |
)
|
| 344 |
+
else:
|
|
|
|
|
|
|
| 345 |
prompt_info = (
|
| 346 |
+
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
|
| 347 |
+
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
|
| 348 |
+
f"<p>{original_prompt}</p>"
|
| 349 |
f"</div>"
|
| 350 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
# Set base seed for reproducibility
|
| 353 |
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
|
| 354 |
|
| 355 |
try:
|
| 356 |
+
edited_images = []
|
| 357 |
+
|
| 358 |
+
# Generate images for each prompt in the batch
|
| 359 |
+
for i, current_prompt in enumerate(batch_prompts):
|
| 360 |
+
# Create unique seed for each image
|
| 361 |
+
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
|
| 362 |
+
|
| 363 |
+
# Add slight noise to the image for variation (except for first image to maintain base)
|
| 364 |
+
if i == 0 and len(batch_prompts) == 1:
|
| 365 |
+
input_image = image
|
| 366 |
+
else:
|
| 367 |
+
input_image = add_noise_to_image(image, noise_level=0.01 + i*0.003)
|
| 368 |
+
|
| 369 |
+
# Slightly vary guidance scale for each image
|
| 370 |
+
varied_guidance = true_guidance_scale + random.uniform(-0.2, 0.2)
|
| 371 |
+
varied_guidance = max(1.0, min(10.0, varied_guidance))
|
| 372 |
+
|
| 373 |
+
# Generate single image
|
| 374 |
+
result = pipe(
|
| 375 |
+
image=input_image,
|
| 376 |
+
prompt=current_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
negative_prompt=" ",
|
| 378 |
num_inference_steps=num_inference_steps,
|
| 379 |
generator=generator,
|
| 380 |
+
true_cfg_scale=varied_guidance,
|
| 381 |
+
num_images_per_prompt=1
|
| 382 |
).images
|
| 383 |
+
edited_images.extend(result)
|
| 384 |
+
|
| 385 |
+
print(f"Generated image {i+1}/{len(batch_prompts)} with prompt: {current_prompt[:50]}...")
|
| 386 |
|
| 387 |
# Clear cache after generation
|
| 388 |
if device == "cuda":
|
| 389 |
torch.cuda.empty_cache()
|
| 390 |
gc.collect()
|
| 391 |
+
|
| 392 |
return edited_images, base_seed, prompt_info
|
| 393 |
except Exception as e:
|
| 394 |
# Clear cache on error
|
|
|
|
| 402 |
f"<p>{str(e)[:200]}</p>"
|
| 403 |
f"</div>"
|
| 404 |
)
|
| 405 |
+
|
| 406 |
+
|
| 407 |
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
| 408 |
gr.Markdown("""
|
| 409 |
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
|
| 410 |
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
|
| 411 |
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
|
| 412 |
+
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation, 🎨 Preset Batches</p>
|
| 413 |
</div>
|
| 414 |
""")
|
| 415 |
|
|
|
|
| 417 |
# Input Column
|
| 418 |
with gr.Column(scale=1):
|
| 419 |
input_image = gr.Image(
|
| 420 |
+
label="Source Image",
|
| 421 |
+
type="pil",
|
| 422 |
height=300
|
| 423 |
)
|
| 424 |
prompt = gr.Textbox(
|
| 425 |
+
label="Edit Instructions",
|
| 426 |
placeholder="e.g. Replace the background with a beach sunset...",
|
| 427 |
lines=2,
|
| 428 |
max_lines=4
|
| 429 |
)
|
| 430 |
|
| 431 |
+
# Add preset dropdown
|
| 432 |
with gr.Row():
|
| 433 |
+
preset_dropdown = gr.Dropdown(
|
| 434 |
+
choices=get_preset_choices(),
|
| 435 |
+
value=None,
|
| 436 |
+
label="Preset Batch Generation",
|
| 437 |
+
interactive=True
|
| 438 |
+
)
|
| 439 |
rewrite_toggle = gr.Checkbox(
|
| 440 |
+
label="Enable Prompt Enhancement",
|
| 441 |
value=True,
|
| 442 |
interactive=True
|
| 443 |
)
|
| 444 |
run_button = gr.Button(
|
| 445 |
+
"Generate Edits",
|
| 446 |
+
variant="primary",
|
| 447 |
min_width=120
|
| 448 |
)
|
| 449 |
|
| 450 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 451 |
with gr.Row():
|
| 452 |
seed = gr.Slider(
|
| 453 |
+
label="Seed",
|
| 454 |
+
minimum=0,
|
| 455 |
+
maximum=MAX_SEED,
|
| 456 |
+
step=1,
|
| 457 |
value=42
|
| 458 |
)
|
| 459 |
randomize_seed = gr.Checkbox(
|
| 460 |
+
label="Random Seed",
|
| 461 |
value=True
|
| 462 |
)
|
| 463 |
with gr.Row():
|
| 464 |
true_guidance_scale = gr.Slider(
|
| 465 |
+
label="Guidance Scale",
|
| 466 |
+
minimum=1.0,
|
| 467 |
+
maximum=10.0,
|
| 468 |
+
step=0.1,
|
| 469 |
value=4.0
|
| 470 |
)
|
| 471 |
num_inference_steps = gr.Slider(
|
| 472 |
+
label="Inference Steps",
|
| 473 |
+
minimum=4,
|
| 474 |
+
maximum=16,
|
| 475 |
+
step=1,
|
| 476 |
value=8
|
| 477 |
)
|
| 478 |
num_images_per_prompt = gr.Slider(
|
| 479 |
+
label="Output Count (Manual)",
|
| 480 |
+
minimum=1,
|
| 481 |
+
maximum=4,
|
| 482 |
+
step=1,
|
| 483 |
value=2
|
| 484 |
)
|
| 485 |
+
|
| 486 |
# Output Column
|
| 487 |
with gr.Column(scale=2):
|
| 488 |
result = gr.Gallery(
|
|
|
|
| 497 |
"Prompt details will appear after generation</div>"
|
| 498 |
)
|
| 499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
# Set up processing
|
| 501 |
inputs = [
|
| 502 |
input_image,
|
|
|
|
| 506 |
true_guidance_scale,
|
| 507 |
num_inference_steps,
|
| 508 |
rewrite_toggle,
|
| 509 |
+
num_images_per_prompt,
|
| 510 |
+
preset_dropdown # Add preset dropdown to inputs
|
| 511 |
]
|
|
|
|
| 512 |
outputs = [result, seed, prompt_info]
|
| 513 |
|
| 514 |
run_button.click(
|
|
|
|
| 516 |
inputs=inputs,
|
| 517 |
outputs=outputs
|
| 518 |
)
|
|
|
|
| 519 |
prompt.submit(
|
| 520 |
fn=infer,
|
| 521 |
inputs=inputs,
|
| 522 |
outputs=outputs
|
| 523 |
)
|
| 524 |
|
| 525 |
+
|
| 526 |
demo.queue(max_size=5).launch()
|