Spaces:
Running
on
Zero
Running
on
Zero
review: local prompt inf. (#1)
Browse files- review: local prompt inf. (f8c747170c82f9b807d1c4f08dc22a8c1b3ebaa2)
- app_local.py +168 -123
app_local.py
CHANGED
|
@@ -9,6 +9,7 @@ from diffusers.utils import is_xformers_available
|
|
| 9 |
import os
|
| 10 |
import re
|
| 11 |
import gc
|
|
|
|
| 12 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 13 |
|
| 14 |
#############################
|
|
@@ -78,24 +79,31 @@ Please provide the rewritten instruction in a clean `json` format as:
|
|
| 78 |
|
| 79 |
def extract_json_response(model_output: str) -> str:
|
| 80 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
|
|
|
|
|
|
|
|
|
| 81 |
try:
|
| 82 |
# Try to find the JSON portion in the output
|
| 83 |
start_idx = model_output.find('{')
|
| 84 |
-
end_idx = model_output.rfind('}')
|
| 85 |
-
if start_idx == -1 or end_idx ==
|
| 86 |
return None
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
json_str = model_output[start_idx:end_idx]
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
json_str = re.sub(r'
|
|
|
|
| 92 |
|
| 93 |
# Parse JSON
|
| 94 |
data = json.loads(json_str)
|
| 95 |
|
| 96 |
# Extract rewritten prompt from possible key variations
|
| 97 |
possible_keys = [
|
| 98 |
-
"Rewritten", "rewritten", "Rewrited", "rewrited",
|
| 99 |
"Output", "output", "Enhanced", "enhanced"
|
| 100 |
]
|
| 101 |
for key in possible_keys:
|
|
@@ -105,16 +113,23 @@ def extract_json_response(model_output: str) -> str:
|
|
| 105 |
# Try nested path
|
| 106 |
if "Response" in data and "Rewritten" in data["Response"]:
|
| 107 |
return data["Response"]["Rewritten"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
#
|
| 110 |
-
for
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
except Exception:
|
| 115 |
-
|
| 116 |
-
return None
|
| 117 |
|
|
|
|
|
|
|
| 118 |
def polish_prompt(original_prompt: str) -> str:
|
| 119 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
| 120 |
load_rewriter()
|
|
@@ -136,11 +151,11 @@ def polish_prompt(original_prompt: str) -> str:
|
|
| 136 |
with torch.no_grad():
|
| 137 |
generated_ids = rewriter_model.generate(
|
| 138 |
**model_inputs,
|
| 139 |
-
max_new_tokens=
|
| 140 |
do_sample=True,
|
| 141 |
-
temperature=0.
|
| 142 |
top_p=0.9,
|
| 143 |
-
no_repeat_ngram_size=
|
| 144 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
| 145 |
)
|
| 146 |
|
|
@@ -150,36 +165,50 @@ def polish_prompt(original_prompt: str) -> str:
|
|
| 150 |
skip_special_tokens=True
|
| 151 |
).strip()
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
# Try to extract JSON content
|
| 154 |
-
rewritten_prompt = extract_json_response(enhanced)
|
| 155 |
|
| 156 |
if rewritten_prompt:
|
| 157 |
-
# Clean up
|
| 158 |
-
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(
|
| 159 |
-
rewritten_prompt = rewritten_prompt.replace('\\"', '"')
|
| 160 |
return rewritten_prompt
|
| 161 |
|
| 162 |
# Fallback cleanup if JSON extraction fails
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
#
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
return
|
| 173 |
|
| 174 |
# Load main image editing pipeline
|
| 175 |
pipe = QwenImageEditPipeline.from_pretrained(
|
| 176 |
-
"Qwen/Qwen-Image-Edit",
|
| 177 |
torch_dtype=dtype
|
| 178 |
).to(device)
|
| 179 |
|
| 180 |
# Load LoRA weights for acceleration
|
| 181 |
pipe.load_lora_weights(
|
| 182 |
-
"lightx2v/Qwen-Image-Lightning",
|
| 183 |
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
|
| 184 |
)
|
| 185 |
pipe.fuse_lora()
|
|
@@ -189,7 +218,6 @@ if is_xformers_available():
|
|
| 189 |
else:
|
| 190 |
print("xformers not available")
|
| 191 |
|
| 192 |
-
|
| 193 |
def unload_rewriter():
|
| 194 |
"""Clear enhancement model from memory"""
|
| 195 |
global rewriter_tokenizer, rewriter_model
|
|
@@ -206,7 +234,7 @@ def infer(
|
|
| 206 |
prompt,
|
| 207 |
seed=42,
|
| 208 |
randomize_seed=False,
|
| 209 |
-
true_guidance_scale=
|
| 210 |
num_inference_steps=8,
|
| 211 |
rewrite_prompt=False,
|
| 212 |
num_images_per_prompt=1,
|
|
@@ -220,19 +248,19 @@ def infer(
|
|
| 220 |
try:
|
| 221 |
enhanced_instruction = polish_prompt(original_prompt)
|
| 222 |
prompt_info = (
|
| 223 |
-
f"<div style='margin:10px; padding:
|
| 224 |
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
|
| 225 |
f"<p><strong>Original:</strong> {original_prompt}</p>"
|
| 226 |
-
f"<p><strong>Enhanced:</strong> {enhanced_instruction}</p>"
|
| 227 |
f"</div>"
|
| 228 |
)
|
| 229 |
prompt = enhanced_instruction
|
| 230 |
except Exception as e:
|
| 231 |
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
| 232 |
prompt_info = (
|
| 233 |
-
f"<div style='margin:10px; padding:
|
| 234 |
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
|
| 235 |
-
f"<p>Using original prompt. Error: {str(e)}</p>"
|
| 236 |
f"</div>"
|
| 237 |
)
|
| 238 |
else:
|
|
@@ -247,9 +275,7 @@ def infer(
|
|
| 247 |
unload_rewriter()
|
| 248 |
|
| 249 |
# Set seed for reproducibility
|
| 250 |
-
seed_val = seed
|
| 251 |
-
if randomize_seed:
|
| 252 |
-
seed_val = random.randint(0, 2**32 - 1)
|
| 253 |
generator = torch.Generator(device=device).manual_seed(seed_val)
|
| 254 |
|
| 255 |
try:
|
|
@@ -263,121 +289,140 @@ def infer(
|
|
| 263 |
true_cfg_scale=true_guidance_scale,
|
| 264 |
num_images_per_prompt=num_images_per_prompt
|
| 265 |
).images
|
|
|
|
|
|
|
| 266 |
except Exception as e:
|
| 267 |
gr.Error(f"Image generation failed: {str(e)}")
|
| 268 |
-
|
| 269 |
-
f"<div style='margin:10px; padding:
|
| 270 |
-
f"<h4 style='margin-top: 0;'
|
|
|
|
| 271 |
f"</div>"
|
| 272 |
)
|
| 273 |
-
return [], seed_val, prompt_info
|
| 274 |
-
|
| 275 |
-
return edited_images, seed_val, prompt_info
|
| 276 |
|
| 277 |
MAX_SEED = np.iinfo(np.int32).max
|
| 278 |
-
examples = [
|
| 279 |
-
"Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
|
| 280 |
-
"Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
|
| 281 |
-
"Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
|
| 282 |
-
"Remove the blue sky and replace it with a dark night cityscape.",
|
| 283 |
-
"""Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used and position it at top left."""
|
| 284 |
-
]
|
| 285 |
|
| 286 |
-
with gr.Blocks(title="Qwen Image Editor Fast") as demo:
|
| 287 |
gr.Markdown("""
|
| 288 |
-
<div style="text-align: center;">
|
| 289 |
-
<h1>⚡️ Qwen-Image-Edit Lightning
|
| 290 |
-
<p>8-step
|
| 291 |
-
<p>🚧 Work in progress, further improvements coming soon.</p>
|
| 292 |
</div>
|
| 293 |
""")
|
| 294 |
-
|
| 295 |
-
with gr.Row():
|
| 296 |
# Input Column
|
| 297 |
-
with gr.Column():
|
| 298 |
-
input_image = gr.Image(
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
with gr.Accordion("Advanced
|
| 302 |
-
gr.Markdown("### Generation Parameters")
|
| 303 |
with gr.Row():
|
| 304 |
-
seed = gr.Slider(
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
with gr.Row():
|
| 307 |
true_guidance_scale = gr.Slider(
|
| 308 |
-
label="Guidance Scale",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
)
|
| 310 |
num_inference_steps = gr.Slider(
|
| 311 |
-
label="Inference Steps",
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
| 315 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
rewrite_toggle = gr.Checkbox(
|
| 318 |
-
label="Enable AI Prompt Enhancement",
|
| 319 |
-
value=True
|
| 320 |
-
)
|
| 321 |
-
|
| 322 |
-
run_button = gr.Button("Generate Edits", variant="primary")
|
| 323 |
-
|
| 324 |
# Output Column
|
| 325 |
-
with gr.Column():
|
| 326 |
result = gr.Gallery(
|
| 327 |
-
label="
|
| 328 |
-
columns=lambda x:
|
| 329 |
-
|
| 330 |
-
|
|
|
|
| 331 |
)
|
| 332 |
prompt_info = gr.HTML(
|
| 333 |
-
"<div style='
|
| 334 |
-
"
|
| 335 |
)
|
| 336 |
|
| 337 |
-
#
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
-
#
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
fn=infer,
|
| 347 |
-
inputs=
|
| 348 |
-
|
| 349 |
-
prompt,
|
| 350 |
-
seed,
|
| 351 |
-
randomize_seed,
|
| 352 |
-
true_guidance_scale,
|
| 353 |
-
num_inference_steps,
|
| 354 |
-
rewrite_toggle,
|
| 355 |
-
num_images_per_prompt
|
| 356 |
-
],
|
| 357 |
-
outputs=[result, seed, prompt_info]
|
| 358 |
)
|
| 359 |
|
| 360 |
prompt.submit(
|
| 361 |
fn=infer,
|
| 362 |
-
inputs=
|
| 363 |
-
|
| 364 |
-
prompt,
|
| 365 |
-
seed,
|
| 366 |
-
randomize_seed,
|
| 367 |
-
true_guidance_scale,
|
| 368 |
-
num_inference_steps,
|
| 369 |
-
rewrite_toggle,
|
| 370 |
-
num_images_per_prompt
|
| 371 |
-
],
|
| 372 |
-
outputs=[result, seed, prompt_info]
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
# Vectorize prompt info visibility
|
| 376 |
-
run_event.then(
|
| 377 |
-
fn=lambda: gr.update(visible=True),
|
| 378 |
-
inputs=None,
|
| 379 |
-
outputs=[prompt_info],
|
| 380 |
-
queue=False
|
| 381 |
)
|
| 382 |
|
| 383 |
if __name__ == "__main__":
|
|
|
|
| 9 |
import os
|
| 10 |
import re
|
| 11 |
import gc
|
| 12 |
+
import json # Added json import
|
| 13 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 14 |
|
| 15 |
#############################
|
|
|
|
| 79 |
|
| 80 |
def extract_json_response(model_output: str) -> str:
|
| 81 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
| 82 |
+
# New: Remove code block markers first
|
| 83 |
+
model_output = re.sub(r'```(?:json)?\s*', '', model_output)
|
| 84 |
+
|
| 85 |
try:
|
| 86 |
# Try to find the JSON portion in the output
|
| 87 |
start_idx = model_output.find('{')
|
| 88 |
+
end_idx = model_output.rfind('}')
|
| 89 |
+
if start_idx == -1 or end_idx == -1:
|
| 90 |
return None
|
| 91 |
|
| 92 |
+
# Expand to the full object including outer braces
|
| 93 |
+
end_idx += 1 # Include the closing brace
|
| 94 |
+
|
| 95 |
json_str = model_output[start_idx:end_idx]
|
| 96 |
+
|
| 97 |
+
# Improved quote handling for values
|
| 98 |
+
json_str = re.sub(r'(\w+)\s*:', r'"\1":', json_str) # Quote keys
|
| 99 |
+
json_str = re.sub(r':\s*([^"\s{[]+)', r': "\1"', json_str) # Quote unquoted string values
|
| 100 |
|
| 101 |
# Parse JSON
|
| 102 |
data = json.loads(json_str)
|
| 103 |
|
| 104 |
# Extract rewritten prompt from possible key variations
|
| 105 |
possible_keys = [
|
| 106 |
+
"Rewritten", "rewritten", "Rewrited", "rewrited",
|
| 107 |
"Output", "output", "Enhanced", "enhanced"
|
| 108 |
]
|
| 109 |
for key in possible_keys:
|
|
|
|
| 113 |
# Try nested path
|
| 114 |
if "Response" in data and "Rewritten" in data["Response"]:
|
| 115 |
return data["Response"]["Rewritten"].strip()
|
| 116 |
+
|
| 117 |
+
# Handle nested JSON objects (additional protection)
|
| 118 |
+
if isinstance(data, dict):
|
| 119 |
+
for value in data.values():
|
| 120 |
+
if isinstance(value, dict) and "Rewritten" in value:
|
| 121 |
+
return value["Rewritten"].strip()
|
| 122 |
|
| 123 |
+
# Try to find any string value that looks like an instruction
|
| 124 |
+
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
|
| 125 |
+
if str_values:
|
| 126 |
+
return str_values[0].strip()
|
| 127 |
|
| 128 |
+
except Exception as e:
|
| 129 |
+
print(f"JSON parse error: {str(e)}")
|
|
|
|
| 130 |
|
| 131 |
+
return None
|
| 132 |
+
|
| 133 |
def polish_prompt(original_prompt: str) -> str:
|
| 134 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
| 135 |
load_rewriter()
|
|
|
|
| 151 |
with torch.no_grad():
|
| 152 |
generated_ids = rewriter_model.generate(
|
| 153 |
**model_inputs,
|
| 154 |
+
max_new_tokens=150, # Reduced for better quality
|
| 155 |
do_sample=True,
|
| 156 |
+
temperature=0.4, # Less creative but more focused
|
| 157 |
top_p=0.9,
|
| 158 |
+
no_repeat_ngram_size=3,
|
| 159 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
| 160 |
)
|
| 161 |
|
|
|
|
| 165 |
skip_special_tokens=True
|
| 166 |
).strip()
|
| 167 |
|
| 168 |
+
# New: Last-resort JSON content extraction
|
| 169 |
+
json_str = enhanced
|
| 170 |
+
if '```' in enhanced:
|
| 171 |
+
parts = enhanced.split('```')
|
| 172 |
+
if len(parts) >= 3:
|
| 173 |
+
json_str = parts[1] # Take content between first set of ```
|
| 174 |
+
|
| 175 |
# Try to extract JSON content
|
| 176 |
+
rewritten_prompt = extract_json_response(json_str if '```' in enhanced else enhanced)
|
| 177 |
|
| 178 |
if rewritten_prompt:
|
| 179 |
+
# Clean up remaining artifacts
|
| 180 |
+
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
|
| 181 |
+
rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
|
| 182 |
return rewritten_prompt
|
| 183 |
|
| 184 |
# Fallback cleanup if JSON extraction fails
|
| 185 |
+
if '```' in enhanced:
|
| 186 |
+
# Extract content from code blocks
|
| 187 |
+
parts = enhanced.split('```')
|
| 188 |
+
if len(parts) >= 3:
|
| 189 |
+
rewritten_prompt = parts[1].strip()
|
| 190 |
+
else:
|
| 191 |
+
rewritten_prompt = enhanced
|
| 192 |
+
else:
|
| 193 |
+
rewritten_prompt = enhanced
|
| 194 |
|
| 195 |
+
# Improved cleaning of fallback output
|
| 196 |
+
rewritten_prompt = re.sub(r'.*{.*}.*', '', rewritten_prompt)
|
| 197 |
+
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
|
| 198 |
+
if ': ' in rewritten_prompt:
|
| 199 |
+
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
|
| 200 |
|
| 201 |
+
return rewritten_prompt[:200] # Ensure reasonable length
|
| 202 |
|
| 203 |
# Load main image editing pipeline
|
| 204 |
pipe = QwenImageEditPipeline.from_pretrained(
|
| 205 |
+
"Qwen/Qwen-Image-Edit",
|
| 206 |
torch_dtype=dtype
|
| 207 |
).to(device)
|
| 208 |
|
| 209 |
# Load LoRA weights for acceleration
|
| 210 |
pipe.load_lora_weights(
|
| 211 |
+
"lightx2v/Qwen-Image-Lightning",
|
| 212 |
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
|
| 213 |
)
|
| 214 |
pipe.fuse_lora()
|
|
|
|
| 218 |
else:
|
| 219 |
print("xformers not available")
|
| 220 |
|
|
|
|
| 221 |
def unload_rewriter():
|
| 222 |
"""Clear enhancement model from memory"""
|
| 223 |
global rewriter_tokenizer, rewriter_model
|
|
|
|
| 234 |
prompt,
|
| 235 |
seed=42,
|
| 236 |
randomize_seed=False,
|
| 237 |
+
true_guidance_scale=1.0,
|
| 238 |
num_inference_steps=8,
|
| 239 |
rewrite_prompt=False,
|
| 240 |
num_images_per_prompt=1,
|
|
|
|
| 248 |
try:
|
| 249 |
enhanced_instruction = polish_prompt(original_prompt)
|
| 250 |
prompt_info = (
|
| 251 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
|
| 252 |
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
|
| 253 |
f"<p><strong>Original:</strong> {original_prompt}</p>"
|
| 254 |
+
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
|
| 255 |
f"</div>"
|
| 256 |
)
|
| 257 |
prompt = enhanced_instruction
|
| 258 |
except Exception as e:
|
| 259 |
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
| 260 |
prompt_info = (
|
| 261 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
|
| 262 |
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
|
| 263 |
+
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
|
| 264 |
f"</div>"
|
| 265 |
)
|
| 266 |
else:
|
|
|
|
| 275 |
unload_rewriter()
|
| 276 |
|
| 277 |
# Set seed for reproducibility
|
| 278 |
+
seed_val = seed if not randomize_seed else random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
| 279 |
generator = torch.Generator(device=device).manual_seed(seed_val)
|
| 280 |
|
| 281 |
try:
|
|
|
|
| 289 |
true_cfg_scale=true_guidance_scale,
|
| 290 |
num_images_per_prompt=num_images_per_prompt
|
| 291 |
).images
|
| 292 |
+
return edited_images, seed_val, prompt_info
|
| 293 |
+
|
| 294 |
except Exception as e:
|
| 295 |
gr.Error(f"Image generation failed: {str(e)}")
|
| 296 |
+
return [], seed_val, (
|
| 297 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00; background: #fef5f5'>"
|
| 298 |
+
f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
|
| 299 |
+
f"<p>{str(e)[:200]}</p>"
|
| 300 |
f"</div>"
|
| 301 |
)
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
+
with gr.Blocks(title="Qwen Image Editor Fast", css=".gr-gallery {min-height: 300px}") as demo:
|
| 306 |
gr.Markdown("""
|
| 307 |
+
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
|
| 308 |
+
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
|
| 309 |
+
<p>8-step inferencing • Local Prompt Enhancement • H200 Optimized</p>
|
|
|
|
| 310 |
</div>
|
| 311 |
""")
|
| 312 |
+
|
| 313 |
+
with gr.Row(equal_height=True):
|
| 314 |
# Input Column
|
| 315 |
+
with gr.Column(scale=1):
|
| 316 |
+
input_image = gr.Image(
|
| 317 |
+
label="Source Image",
|
| 318 |
+
type="pil",
|
| 319 |
+
height=300
|
| 320 |
+
)
|
| 321 |
+
prompt = gr.Textbox(
|
| 322 |
+
label="Edit Instructions",
|
| 323 |
+
placeholder="e.g. Replace the background with a beach sunset...",
|
| 324 |
+
lines=2,
|
| 325 |
+
max_lines=4
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
with gr.Row():
|
| 329 |
+
rewrite_toggle = gr.Checkbox(
|
| 330 |
+
label="Enable Prompt Enhancement",
|
| 331 |
+
value=True,
|
| 332 |
+
interactive=True
|
| 333 |
+
)
|
| 334 |
+
run_button = gr.Button(
|
| 335 |
+
"Generate Edits",
|
| 336 |
+
variant="primary",
|
| 337 |
+
min_width=120
|
| 338 |
+
)
|
| 339 |
|
| 340 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
|
|
|
| 341 |
with gr.Row():
|
| 342 |
+
seed = gr.Slider(
|
| 343 |
+
label="Seed",
|
| 344 |
+
min=0,
|
| 345 |
+
max=MAX_SEED,
|
| 346 |
+
step=1,
|
| 347 |
+
value=42
|
| 348 |
+
)
|
| 349 |
+
randomize_seed = gr.Checkbox(
|
| 350 |
+
label="Random Seed",
|
| 351 |
+
value=True
|
| 352 |
+
)
|
| 353 |
with gr.Row():
|
| 354 |
true_guidance_scale = gr.Slider(
|
| 355 |
+
label="Guidance Scale",
|
| 356 |
+
min=1.0,
|
| 357 |
+
max=5.0,
|
| 358 |
+
step=0.1,
|
| 359 |
+
value=1.0
|
| 360 |
)
|
| 361 |
num_inference_steps = gr.Slider(
|
| 362 |
+
label="Inference Steps",
|
| 363 |
+
min=4,
|
| 364 |
+
max=16,
|
| 365 |
+
step=1,
|
| 366 |
+
value=8
|
| 367 |
)
|
| 368 |
+
num_images_per_prompt = gr.Slider(
|
| 369 |
+
label="Output Count",
|
| 370 |
+
min=1,
|
| 371 |
+
max=4,
|
| 372 |
+
step=1,
|
| 373 |
+
value=1
|
| 374 |
+
)
|
| 375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
# Output Column
|
| 377 |
+
with gr.Column(scale=1):
|
| 378 |
result = gr.Gallery(
|
| 379 |
+
label="Edited Images",
|
| 380 |
+
columns=lambda x: min(x, 2),
|
| 381 |
+
height=500,
|
| 382 |
+
object_fit="cover",
|
| 383 |
+
preview=True
|
| 384 |
)
|
| 385 |
prompt_info = gr.HTML(
|
| 386 |
+
value="<div style='padding:15px; background:#f8f9fa; border-radius:8px; margin-top:15px'>"
|
| 387 |
+
"Prompt details will appear after generation</div>"
|
| 388 |
)
|
| 389 |
|
| 390 |
+
# Examples
|
| 391 |
+
gr.Examples(
|
| 392 |
+
examples=[
|
| 393 |
+
"Change the background scene to a rooftop bar at night",
|
| 394 |
+
"Transform to pixel art style with 8-bit graphics",
|
| 395 |
+
"Replace all text with 'Qwen AI' in futuristic font"
|
| 396 |
+
],
|
| 397 |
+
inputs=[prompt],
|
| 398 |
+
label="Sample Instructions",
|
| 399 |
+
cache_examples=True
|
| 400 |
+
)
|
| 401 |
|
| 402 |
+
# Set up processing
|
| 403 |
+
inputs = [
|
| 404 |
+
input_image,
|
| 405 |
+
prompt,
|
| 406 |
+
seed,
|
| 407 |
+
randomize_seed,
|
| 408 |
+
true_guidance_scale,
|
| 409 |
+
num_inference_steps,
|
| 410 |
+
rewrite_toggle,
|
| 411 |
+
num_images_per_prompt
|
| 412 |
+
]
|
| 413 |
+
|
| 414 |
+
outputs = [result, seed, prompt_info]
|
| 415 |
+
|
| 416 |
+
run_button.click(
|
| 417 |
fn=infer,
|
| 418 |
+
inputs=inputs,
|
| 419 |
+
outputs=outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
)
|
| 421 |
|
| 422 |
prompt.submit(
|
| 423 |
fn=infer,
|
| 424 |
+
inputs=inputs,
|
| 425 |
+
outputs=outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
)
|
| 427 |
|
| 428 |
if __name__ == "__main__":
|