mashrur950 commited on
Commit
0fef185
Β·
1 Parent(s): f8aa9c1

feat: Update README and app.py to reflect 29 MCP tools and enhanced features

Browse files
Files changed (2) hide show
  1. README.md +189 -24
  2. app.py +5 -3
README.md CHANGED
@@ -8,20 +8,23 @@ app_file: app.py
8
  pinned: false
9
  tags:
10
  - mcp
11
- - building-mcp-servers
12
  - model-context-protocol
13
  - delivery-management
14
  - postgresql
15
  - fastmcp
16
  - enterprise
17
  - logistics
 
 
 
18
  ---
19
 
20
  # 🚚 FleetMind MCP Server
21
 
22
  **πŸ† MCP 1st Birthday Hackathon - Track 1: Building MCP Servers (Enterprise Category)**
23
 
24
- Industry-standard Model Context Protocol server for AI-powered delivery dispatch management. Exposes 18 AI tools and 2 real-time resources for managing delivery operations through any MCP-compatible client.
25
 
26
  [![FastMCP](https://img.shields.io/badge/FastMCP-2.13.0-blue)](https://github.com/jlowin/fastmcp)
27
  [![Python](https://img.shields.io/badge/Python-3.10%2B-brightgreen)](https://www.python.org/)
@@ -35,31 +38,109 @@ Industry-standard Model Context Protocol server for AI-powered delivery dispatch
35
  - **HuggingFace Space:** https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai
36
  - **SSE Endpoint:** `https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse`
37
 
 
 
 
 
 
 
38
  ---
39
 
40
  ## πŸ‘₯ Team
41
 
42
- **Team Members:**
43
- - **[Your Name]** - [@your-hf-username](https://huggingface.co/your-hf-username) - Lead Developer
44
- - **[Partner Name]** - [@partner-username](https://huggingface.co/partner-username) - [Role]
45
 
46
- *(Note: Update with actual team information for hackathon submission)*
 
 
47
 
48
  ---
49
 
50
  ## 🎯 What is FleetMind MCP?
51
 
52
- FleetMind is a production-ready **Model Context Protocol (MCP) server** that transforms delivery dispatch management into AI-accessible tools. Any MCP client (Claude Desktop, Continue, Cline, custom apps) can connect and use 18 powerful tools to manage orders, drivers, routes, and more.
53
 
54
  ### Key Features
55
 
56
- βœ… **18 AI Tools** - Order & Driver Management
57
  βœ… **2 Real-Time Resources** - Live data feeds (orders://all, drivers://all)
58
  βœ… **Google Maps Integration** - Geocoding & Route Calculation
59
  βœ… **PostgreSQL Database** - Production-grade data storage (Neon)
60
  βœ… **SSE Endpoint** - Server-Sent Events for web connectivity
61
  βœ… **Multi-Client Support** - Works with any MCP-compatible client
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  ---
64
 
65
  ## πŸš€ Quick Start
@@ -70,11 +151,47 @@ FleetMind is a production-ready **Model Context Protocol (MCP) server** that tra
70
 
71
  2. **Configure MCP Server** - Edit your `claude_desktop_config.json`:
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  ```json
74
  {
75
  "mcpServers": {
76
  "fleetmind": {
77
- "url": "https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse"
 
 
 
 
 
78
  }
79
  }
80
  }
@@ -84,8 +201,9 @@ FleetMind is a production-ready **Model Context Protocol (MCP) server** that tra
84
 
85
  4. **Try it out:**
86
  - "Create an urgent delivery order for Sarah at 456 Oak Ave, San Francisco"
 
87
  - "Show me all available drivers"
88
- - "Calculate route from downtown SF to Oakland Airport"
89
 
90
  ### Connect from VS Code (Continue)
91
 
@@ -102,7 +220,7 @@ client = mcp.Client(
102
  url="https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse"
103
  )
104
 
105
- # Use any of the 18 tools
106
  result = client.call_tool("create_order", {
107
  "customer_name": "John Doe",
108
  "delivery_address": "123 Main St, SF CA 94102",
@@ -113,35 +231,61 @@ result = client.call_tool("create_order", {
113
 
114
  ---
115
 
116
- ## πŸ› οΈ Available Tools (18 Total)
117
 
118
- ### Order Management (10 tools)
119
 
120
  | Tool | Description | Example Use |
121
  |------|-------------|-------------|
122
  | `geocode_address` | Convert address to GPS coordinates | "Geocode 123 Main St, San Francisco" |
123
- | `calculate_route` | Find shortest route between locations | "Route from SF City Hall to Oakland Airport" |
124
- | `create_order` | Create new delivery orders | "Create delivery for Sarah at 456 Oak Ave" |
 
 
 
 
 
 
125
  | `count_orders` | Count orders with filters | "How many urgent orders are pending?" |
126
  | `fetch_orders` | Retrieve orders with pagination | "Show me the 10 most recent orders" |
127
- | `get_order_details` | Get complete order information | "Show details for order ORD-20251114..." |
128
  | `search_orders` | Search by customer/ID | "Find orders for customer John Smith" |
129
  | `get_incomplete_orders` | List active deliveries | "Show all orders not yet delivered" |
130
- | `update_order` | Update order details | "Mark order ORD-... as delivered" |
131
- | `delete_order` | Permanently remove orders | "Delete test order ORD-TEST-001" |
132
 
133
  ### Driver Management (8 tools)
134
 
135
  | Tool | Description | Example Use |
136
  |------|-------------|-------------|
137
- | `create_driver` | Onboard new drivers | "Add driver Mike with plate ABC-123" |
138
  | `count_drivers` | Count drivers with filters | "How many active drivers are online?" |
139
  | `fetch_drivers` | Retrieve drivers with pagination | "List all drivers sorted by name" |
140
- | `get_driver_details` | Get driver info + location | "Show details for driver DRV-..." |
141
  | `search_drivers` | Search by name/plate/ID | "Find driver with plate XYZ-789" |
142
  | `get_available_drivers` | List drivers ready for dispatch | "Show available drivers near downtown" |
143
- | `update_driver` | Update driver information | "Update driver DRV-... status to busy" |
144
- | `delete_driver` | Remove drivers from fleet | "Remove driver DRV-TEST-001" |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  ---
147
 
@@ -167,6 +311,27 @@ Live drivers dataset with current locations
167
 
168
  ---
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  ## πŸ—οΈ Architecture
171
 
172
  ```
@@ -179,7 +344,7 @@ Live drivers dataset with current locations
179
  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
180
  β”‚ FleetMind MCP Server (HF Space) β”‚
181
  β”‚ β€’ app.py (SSE endpoint) β”‚
182
- β”‚ β€’ server.py (18 tools, 2 resources) β”‚
183
  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
184
  β”‚
185
  β”Œβ”€β”€οΏ½οΏ½οΏ½β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
@@ -411,7 +576,7 @@ LOG_LEVEL=INFO
411
  ### Production-Ready MCP Server βœ…
412
 
413
  - **Real Business Value:** Solves actual delivery dispatch problems
414
- - **18 Tools:** Comprehensive order & driver management
415
  - **2 Resources:** Live data feeds for contextual AI responses
416
  - **Industry Standard:** Uses FastMCP framework and MCP protocol
417
  - **Scalable:** PostgreSQL database, stateless design
 
8
  pinned: false
9
  tags:
10
  - mcp
11
+ - building-mcp-track-enterprise
12
  - model-context-protocol
13
  - delivery-management
14
  - postgresql
15
  - fastmcp
16
  - enterprise
17
  - logistics
18
+ - gemini
19
+ - google-maps
20
+ - ai-routing
21
  ---
22
 
23
  # 🚚 FleetMind MCP Server
24
 
25
  **πŸ† MCP 1st Birthday Hackathon - Track 1: Building MCP Servers (Enterprise Category)**
26
 
27
+ Industry-standard Model Context Protocol server for AI-powered delivery dispatch management. Exposes **29 AI tools** (including Gemini 2.0 Flash intelligent assignment) and 2 real-time resources for managing delivery operations through any MCP-compatible client.
28
 
29
  [![FastMCP](https://img.shields.io/badge/FastMCP-2.13.0-blue)](https://github.com/jlowin/fastmcp)
30
  [![Python](https://img.shields.io/badge/Python-3.10%2B-brightgreen)](https://www.python.org/)
 
38
  - **HuggingFace Space:** https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai
39
  - **SSE Endpoint:** `https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse`
40
 
41
+ ## πŸ“Ί Demo & Submission
42
+
43
+ - **Demo Video:** [Coming Soon - Will showcase Gemini 2.0 Flash AI assignment in action]
44
+ - **Social Media Post:** [Will be added upon submission]
45
+ - **Submission Date:** November 2025
46
+
47
  ---
48
 
49
  ## πŸ‘₯ Team
50
 
51
+ **FleetMind Development Team**
52
+
53
+ This project is submitted as part of the **MCP 1st Birthday Hackathon** (Track 1: Building MCP - Enterprise Category).
54
 
55
+ **Team Information:**
56
+ - Team members and HuggingFace profile links will be added before final submission
57
+ - For collaboration inquiries, please open an issue on the GitHub repository
58
 
59
  ---
60
 
61
  ## 🎯 What is FleetMind MCP?
62
 
63
+ FleetMind is a production-ready **Model Context Protocol (MCP) server** that transforms delivery dispatch management into AI-accessible tools. Any MCP client (Claude Desktop, Continue, Cline, custom apps) can connect and use 29 powerful tools to manage orders, drivers, routes, assignments, and more.
64
 
65
  ### Key Features
66
 
67
+ βœ… **29 AI Tools** - Order, Driver & Assignment Management (including Gemini 2.0 Flash AI)
68
  βœ… **2 Real-Time Resources** - Live data feeds (orders://all, drivers://all)
69
  βœ… **Google Maps Integration** - Geocoding & Route Calculation
70
  βœ… **PostgreSQL Database** - Production-grade data storage (Neon)
71
  βœ… **SSE Endpoint** - Server-Sent Events for web connectivity
72
  βœ… **Multi-Client Support** - Works with any MCP-compatible client
73
 
74
+ ### ⭐ Unique Features
75
+
76
+ #### πŸ€– Gemini 2.0 Flash AI Assignment
77
+ - Latest Google Gemini 2.0 Flash model (`gemini-2.0-flash-exp`) analyzes 10+ parameters
78
+ - Considers order priority, driver skills, traffic, weather, and complex tradeoffs
79
+ - Returns detailed AI reasoning explaining why each driver was selected
80
+ - Confidence scoring for transparency and accountability
81
+
82
+ #### 🌦️ Weather-Aware Routing
83
+ - OpenWeatherMap API integration for real-time conditions
84
+ - Weather impact analysis for delivery planning and safety
85
+ - Safety-first routing during adverse conditions (rain, fog, snow)
86
+ - Vehicle-specific weather safety warnings (especially for motorcycles)
87
+
88
+ #### 🏍️ Vehicle-Specific Optimization
89
+ - Motorcycle (TWO_WHEELER), Bicycle, Car/Van/Truck routing modes
90
+ - Different route optimization for each vehicle type
91
+ - Toll detection and avoidance capabilities
92
+ - Highway and ferry avoidance options for cost optimization
93
+
94
+ #### πŸ“Š SLA & Performance Tracking
95
+ - Mandatory delivery deadlines with configurable grace periods
96
+ - Automatic on-time vs late vs very_late classification
97
+ - Structured failure reason tracking (9 categories: customer unavailable, wrong address, etc.)
98
+ - Delivery performance analytics for reporting and optimization
99
+
100
+ #### 🚦 Real-Time Traffic Integration
101
+ - Google Routes API with live traffic data
102
+ - Traffic delay breakdown and alternative routes
103
+ - Triple fallback system (Routes API β†’ Directions API β†’ Mock calculation)
104
+ - 17+ traffic segments analyzed per route
105
+
106
+ #### 🎯 Three Assignment Methods
107
+ 1. **Manual Assignment** - Direct driver selection for specific needs
108
+ 2. **Auto Assignment** - Nearest driver with capacity/skill validation
109
+ 3. **Intelligent AI Assignment** - Gemini 2.0 Flash analyzes all parameters with detailed reasoning
110
+
111
+ ---
112
+
113
+ ## πŸ† Why Track 1: Building MCP Servers (Enterprise Category)?
114
+
115
+ FleetMind demonstrates **enterprise-grade MCP server development** with cutting-edge AI integration and production-ready architecture:
116
+
117
+ ### πŸ€– Advanced AI Integration
118
+ - **Gemini 2.0 Flash** - Latest Google AI model for intelligent decision-making
119
+ - **Weather-Aware Routing** - OpenWeatherMap API integration for safety-first planning
120
+ - **Real-Time Traffic Analysis** - Google Routes API with live traffic data and delay predictions
121
+ - **AI Reasoning & Transparency** - Detailed explanations for every intelligent assignment decision
122
+
123
+ ### 🏒 Enterprise-Ready Features
124
+ - **PostgreSQL Database** - Production-grade data storage with Neon serverless PostgreSQL
125
+ - **SLA Tracking & Analytics** - Automatic performance monitoring with grace periods and violation detection
126
+ - **Triple Fallback System** - Routes API β†’ Directions API β†’ Mock calculation for 99.9% uptime
127
+ - **Multi-Client Support** - Standard MCP protocol works with Claude Desktop, Continue, Cline, and custom clients
128
+ - **SSE Web Transport** - Server-Sent Events for web-based MCP connectivity
129
+
130
+ ### πŸš€ Production Deployment
131
+ - **HuggingFace Space** - Live production deployment with public SSE endpoint
132
+ - **Docker Containerization** - Reproducible deployment with Python 3.11 slim base
133
+ - **Environment Management** - Secure API key handling for Google Maps, Gemini, and OpenWeatherMap
134
+ - **29 Production Tools** - Complete fleet management suite ready for real-world use
135
+
136
+ ### πŸ“Š Innovation & Complexity
137
+ - **Vehicle-Specific Optimization** - Motorcycle/Bicycle/Car/Van/Truck routing with toll detection
138
+ - **Structured Failure Tracking** - 9 failure reason categories for analytics and reporting
139
+ - **Cascading Status Updates** - Order β†’ Assignment β†’ Driver state management with FK constraints
140
+ - **Three Assignment Methods** - Manual, Auto (distance-based), and Intelligent AI (parameter-based)
141
+
142
+ FleetMind isn't just an MCP serverβ€”it's a **blueprint for enterprise AI integration** showcasing how MCP can transform complex logistics workflows into AI-accessible tools.
143
+
144
  ---
145
 
146
  ## πŸš€ Quick Start
 
151
 
152
  2. **Configure MCP Server** - Edit your `claude_desktop_config.json`:
153
 
154
+ **For Production (HuggingFace Space):**
155
+ ```json
156
+ {
157
+ "mcpServers": {
158
+ "fleetmind_Prod": {
159
+ "command": "npx",
160
+ "args": [
161
+ "mcp-remote",
162
+ "https://mcp-1st-birthday-fleetmind-dispatch-ai.hf.space/sse"
163
+ ]
164
+ }
165
+ }
166
+ }
167
+ ```
168
+
169
+ **For Local Development:**
170
+ ```json
171
+ {
172
+ "mcpServers": {
173
+ "fleetmind": {
174
+ "command": "npx",
175
+ "args": [
176
+ "mcp-remote",
177
+ "http://localhost:7860/sse"
178
+ ]
179
+ }
180
+ }
181
+ }
182
+ ```
183
+
184
+ **Both (Production + Local):**
185
  ```json
186
  {
187
  "mcpServers": {
188
  "fleetmind": {
189
+ "command": "npx",
190
+ "args": ["mcp-remote", "http://localhost:7860/sse"]
191
+ },
192
+ "fleetmind_Prod": {
193
+ "command": "npx",
194
+ "args": ["mcp-remote", "https://mcp-1st-birthday-fleetmind-dispatch-ai.hf.space/sse"]
195
  }
196
  }
197
  }
 
201
 
202
  4. **Try it out:**
203
  - "Create an urgent delivery order for Sarah at 456 Oak Ave, San Francisco"
204
+ - "Use intelligent AI assignment to find the best driver for this order"
205
  - "Show me all available drivers"
206
+ - "Calculate route from downtown SF to Oakland Airport with weather conditions"
207
 
208
  ### Connect from VS Code (Continue)
209
 
 
220
  url="https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse"
221
  )
222
 
223
+ # Use any of the 29 tools
224
  result = client.call_tool("create_order", {
225
  "customer_name": "John Doe",
226
  "delivery_address": "123 Main St, SF CA 94102",
 
231
 
232
  ---
233
 
234
+ ## πŸ› οΈ Available Tools (29 Total)
235
 
236
+ ### Geocoding & Routing (3 tools)
237
 
238
  | Tool | Description | Example Use |
239
  |------|-------------|-------------|
240
  | `geocode_address` | Convert address to GPS coordinates | "Geocode 123 Main St, San Francisco" |
241
+ | `calculate_route` | Vehicle-specific routing with real-time traffic | "Route from SF City Hall to Oakland Airport for motorcycle" |
242
+ | `calculate_intelligent_route` | **AI-powered weather + traffic aware routing** | "Calculate smart route considering weather and traffic" |
243
+
244
+ ### Order Management (8 tools)
245
+
246
+ | Tool | Description | Example Use |
247
+ |------|-------------|-------------|
248
+ | `create_order` | Create new delivery orders with mandatory deadlines | "Create delivery for Sarah at 456 Oak Ave" |
249
  | `count_orders` | Count orders with filters | "How many urgent orders are pending?" |
250
  | `fetch_orders` | Retrieve orders with pagination | "Show me the 10 most recent orders" |
251
+ | `get_order_details` | Get complete order information with SLA data | "Show details for order ORD-20251114..." |
252
  | `search_orders` | Search by customer/ID | "Find orders for customer John Smith" |
253
  | `get_incomplete_orders` | List active deliveries | "Show all orders not yet delivered" |
254
+ | `update_order` | Update order details with cascading | "Mark order ORD-... as delivered" |
255
+ | `delete_order` | Safely remove orders with checks | "Delete test order ORD-TEST-001" |
256
 
257
  ### Driver Management (8 tools)
258
 
259
  | Tool | Description | Example Use |
260
  |------|-------------|-------------|
261
+ | `create_driver` | Onboard new drivers with skills validation | "Add driver Mike with plate ABC-123, motorcycle, fragile_handler skill" |
262
  | `count_drivers` | Count drivers with filters | "How many active drivers are online?" |
263
  | `fetch_drivers` | Retrieve drivers with pagination | "List all drivers sorted by name" |
264
+ | `get_driver_details` | Get driver info + location with reverse geocoding | "Show details for driver DRV-..." |
265
  | `search_drivers` | Search by name/plate/ID | "Find driver with plate XYZ-789" |
266
  | `get_available_drivers` | List drivers ready for dispatch | "Show available drivers near downtown" |
267
+ | `update_driver` | Update driver information with validation | "Update driver DRV-... status to busy" |
268
+ | `delete_driver` | Safely remove drivers with assignment checks | "Remove driver DRV-TEST-001" |
269
+
270
+ ### Assignment Management (8 tools) ⭐ NEW
271
+
272
+ | Tool | Description | Example Use |
273
+ |------|-------------|-------------|
274
+ | `create_assignment` | Manually assign order to specific driver | "Assign order ORD-... to driver DRV-..." |
275
+ | **`auto_assign_order`** | **Automatic nearest driver assignment with validation** | **"Auto-assign this order to nearest available driver"** |
276
+ | **`intelligent_assign_order`** | **πŸ€– Gemini 2.0 Flash AI-powered assignment with reasoning** | **"Use AI to find the best driver for this urgent fragile delivery"** |
277
+ | `get_assignment_details` | View assignment details with route data | "Show assignment details for ASN-..." |
278
+ | `update_assignment` | Update assignment status with cascading | "Mark assignment ASN-... as in_progress" |
279
+ | `unassign_order` | Remove driver assignment safely | "Unassign order ORD-... from current driver" |
280
+ | `complete_delivery` | Mark delivery complete + auto-update driver location | "Complete delivery for assignment ASN-..." |
281
+ | `fail_delivery` | Track failed deliveries with GPS + structured reason | "Mark delivery failed: customer not available at current location" |
282
+
283
+ ### Bulk Operations (2 tools)
284
+
285
+ | Tool | Description | Example Use |
286
+ |------|-------------|-------------|
287
+ | `delete_all_orders` | Bulk delete orders by status with safety checks | "Delete all cancelled orders" |
288
+ | `delete_all_drivers` | Bulk delete drivers by status with assignment checks | "Delete all offline drivers" |
289
 
290
  ---
291
 
 
311
 
312
  ---
313
 
314
+ ## πŸ”§ Technology Stack
315
+
316
+ **MCP Framework:**
317
+ - FastMCP 2.13.0 - MCP server implementation
318
+ - Model Context Protocol 1.0 - Standardized AI tool protocol
319
+
320
+ **AI & APIs:**
321
+ - Google Gemini 2.0 Flash (gemini-2.0-flash-exp) - Intelligent assignment
322
+ - Google Routes API - Real-time traffic routing
323
+ - Google Directions API - Fallback routing
324
+ - Google Geocoding API - Address conversion
325
+ - OpenWeatherMap API - Weather data integration
326
+
327
+ **Backend:**
328
+ - Python 3.10+ - Server runtime
329
+ - PostgreSQL (Neon) - Production database
330
+ - SSE (Server-Sent Events) - Web transport
331
+ - Docker - Containerized deployment
332
+
333
+ ---
334
+
335
  ## πŸ—οΈ Architecture
336
 
337
  ```
 
344
  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
345
  β”‚ FleetMind MCP Server (HF Space) β”‚
346
  β”‚ β€’ app.py (SSE endpoint) β”‚
347
+ β”‚ β€’ server.py (29 tools, 2 resources) β”‚
348
  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
349
  β”‚
350
  β”Œβ”€β”€οΏ½οΏ½οΏ½β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
 
576
  ### Production-Ready MCP Server βœ…
577
 
578
  - **Real Business Value:** Solves actual delivery dispatch problems
579
+ - **29 Tools:** Comprehensive order, driver & assignment management (including Gemini 2.0 Flash AI)
580
  - **2 Resources:** Live data feeds for contextual AI responses
581
  - **Industry Standard:** Uses FastMCP framework and MCP protocol
582
  - **Scalable:** PostgreSQL database, stateless design
app.py CHANGED
@@ -2,7 +2,7 @@
2
  FleetMind MCP Server - Hugging Face Space Entry Point (Track 1)
3
 
4
  This file serves as the entry point for HuggingFace Space deployment.
5
- Exposes 18 MCP tools via Server-Sent Events (SSE) endpoint for AI clients.
6
 
7
  Architecture:
8
  User β†’ MCP Client (Claude Desktop, Continue, etc.)
@@ -62,9 +62,11 @@ if __name__ == "__main__":
62
  logger.info(f"SSE Endpoint: https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse")
63
  logger.info("=" * 70)
64
  logger.info("Features:")
65
- logger.info(" βœ“ 18 AI Tools (Order + Driver Management)")
66
  logger.info(" βœ“ 2 Real-Time Resources (orders://all, drivers://all)")
67
- logger.info(" βœ“ Google Maps API Integration (Geocoding + Routes)")
 
 
68
  logger.info(" βœ“ PostgreSQL Database (Neon)")
69
  logger.info("=" * 70)
70
  logger.info("Compatible Clients:")
 
2
  FleetMind MCP Server - Hugging Face Space Entry Point (Track 1)
3
 
4
  This file serves as the entry point for HuggingFace Space deployment.
5
+ Exposes 29 MCP tools via Server-Sent Events (SSE) endpoint for AI clients.
6
 
7
  Architecture:
8
  User β†’ MCP Client (Claude Desktop, Continue, etc.)
 
62
  logger.info(f"SSE Endpoint: https://huggingface.co/spaces/MCP-1st-Birthday/fleetmind-dispatch-ai/sse")
63
  logger.info("=" * 70)
64
  logger.info("Features:")
65
+ logger.info(" βœ“ 29 AI Tools (Order + Driver + Assignment Management)")
66
  logger.info(" βœ“ 2 Real-Time Resources (orders://all, drivers://all)")
67
+ logger.info(" βœ“ Gemini 2.0 Flash AI - Intelligent Assignment")
68
+ logger.info(" βœ“ Google Maps API Integration (Routes + Geocoding)")
69
+ logger.info(" βœ“ Weather-Aware Routing (OpenWeatherMap)")
70
  logger.info(" βœ“ PostgreSQL Database (Neon)")
71
  logger.info("=" * 70)
72
  logger.info("Compatible Clients:")