File size: 8,017 Bytes
ab47503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654e8ae
ab47503
 
 
654e8ae
 
 
 
 
 
ab47503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import arxiv
import spacy
import numpy as np
from pyvis.network import Network
from itertools import combinations
from sentence_transformers import SentenceTransformer
from keybert import KeyBERT
from sklearn.cluster import AgglomerativeClustering
from semanticscholar import SemanticScholar
from habanero import Crossref
from collections import Counter
from dotenv import load_dotenv
from openai import OpenAI
from typing import List


sch = SemanticScholar(timeout=30)
cr = Crossref(mailto="[email protected]")

try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

kw_model = KeyBERT(model="sentence-transformers/allenai-specter")
embed_model = SentenceTransformer("sentence-transformers/allenai-specter")

load_dotenv(dotenv_path="config/.env")
client = OpenAI(
    api_key=os.getenv("API_KEY"),         
    base_url="https://api.deepinfra.com/v1/openai"
)

def fetch_arxiv(query, max_results=5):
    # Scrape papers from arXiv
    search = arxiv.Search(query=query, max_results=max_results)
    return [{
        "entry_id": r.entry_id.split("/")[-1],
        "title":    r.title,
        "abstract": r.summary
    } for r in search.results()]

def fetch_semantic_scholar(query, max_results=5): 
    # Scrape papers from Semantic Scholar
    # Note: Semantic Scholar API does not return abstracts for all papers
    paginated = sch.search_paper(query, fields=['title'], limit=max_results) 
    first_page = paginated.items
    papers = []
    for paper in first_page:
        papers.append({
            "entry_id": paper.paperId,
            "title":    paper.title,
            "abstract": paper.abstract or ""
        })
    return papers

def fetch_crossref(query, max_results=5):
    # Scrape papers from CrossRef
    # Note: CrossRef API does not return abstracts for all papers
    items = cr.works(query=query, limit=max_results)["message"]["items"]
    return [{
        "entry_id": itm.get("DOI", str(i)),
        "title":    itm.get("title", [""])[0],
        "abstract": itm.get("abstract", "")
    } for i, itm in enumerate(items)]

def summarize_abstract_spacy(text: str, num_sentences: int = 3) -> str:
    # Summarize abstracts via spaCy's en_core_web_sm
    doc = nlp(text)
    freqs = {}
    for tok in doc:
        if tok.is_stop or tok.is_punct or not tok.is_alpha:
            continue
        w = tok.text.lower()
        freqs[w] = freqs.get(w, 0) + 1
    if not freqs: return ""
    maxf = max(freqs.values())
    for w in freqs: freqs[w] /= maxf

    sent_scores = {
        sent: sum(freqs.get(tok.text.lower(),0) for tok in sent if tok.is_alpha)
        for sent in doc.sents
    }
    # pick top sentences
    best = sorted(sent_scores, key=sent_scores.get, reverse=True)[:num_sentences]
    best_sorted = sorted(best, key=lambda s: list(doc.sents).index(s))
    return " ".join(s.text.strip() for s in best_sorted)

def dedupe_by_substring(phrases):
    # Remove phrases that are substrings of others. Used in keyphrase extraction.
    filtered = []
    for ph, sc in phrases:
        # if any already-kept phrase contains this one, skip it
        if any(ph in kept for kept, _ in filtered):
            continue
        # if this phrase contains any already-kept shorter phrase, remove that shorter phrase
        filtered = [(k,s) for k,s in filtered if ph not in k]
        filtered.append((ph, sc))
    return filtered

def dedupe_by_embedding(phrases, threshold: float = 0.1):
    # Remove phrase that are too similar to others. Used in keyphrase extraction.
    texts = [ph for ph, _ in phrases]
    embs = embed_model.encode(texts, normalize_embeddings=True)

    # Cluster by cosine distance
    clustering = AgglomerativeClustering(
        n_clusters=None,
        metric="cosine",
        linkage="average",
        distance_threshold=threshold
    ).fit(embs)

    clusters = {}
    for (ph, sc), lbl in zip(phrases, clustering.labels_):
        clusters.setdefault(lbl, []).append((ph, sc))

    # Pick top scoring phrase per cluster
    result = [max(members, key=lambda x: x[1]) for members in clusters.values()]
    return sorted(result, key=lambda x: x[1], reverse=True)

def extract_entities(text: str, top_n: int = 20):
    # Use Specter model via KeyBERT to extract keyphrases
    raw_phrases = kw_model.extract_keywords(
        text,
        keyphrase_ngram_range=(1, 3),
        stop_words="english",
        top_n=top_n
    )
    # Remove duplicates and too-similar phrases
    subphrases = dedupe_by_substring(raw_phrases)
    deduped = dedupe_by_embedding(subphrases)

    return [(ph, "KEYPHRASE") for ph, _ in deduped[:10]]

def summarize_abstracts_llm(
    abstracts: List[str],
    model: str = "Qwen/Qwen2.5-Coder-32B-Instruct",
    temperature: float = 0.7,
    max_tokens: int = 500
) -> str:
    # Cross-paper summary using Qwen model
    prompt = (
        f"These are the abstracts of {len(abstracts)} papers. "
        "Produce a cross-paper summary that summarizes all the key points across each paper. Keep it to 5-6 sentences.\n\n"
    )
    for i, abs_text in enumerate(abstracts, start=1):
        prompt += f"Paper {i} abstract:\n{abs_text}\n\n"

    resp = client.chat.completions.create(
        model=model,
        messages=[
            {"role": "system", "content": "You are a helpful academic research assistant."},
            {"role": "user",   "content": prompt}
        ],
        temperature=temperature,
        max_tokens=max_tokens,
    )
    return resp.choices[0].message.content.strip()

def build_global_concept_map(papers):
    # Global concept map of scraped papers
    
    # Map node to title fpr tooltip
    phrase_to_titles = {}
    for p in papers:
        ents = extract_entities(p["abstract"])
        phrases = {e for e,_ in ents}
        for ph in phrases:
            phrase_to_titles.setdefault(ph, []).append(p["title"])

    freq = Counter()
    for ph, titles in phrase_to_titles.items():
        freq[ph] = len(titles)

    net = Network(height="600px", width="100%")
    id_map = {ph: idx for idx, ph in enumerate(freq, start=1)}

    for ph, count in freq.items():
        titles = phrase_to_titles.get(ph, [])
        tooltip = "<br>".join(titles)
        net.add_node(
            id_map[ph],
            label=ph,
            title=tooltip,
            size=10 + 2 * count
        )

    cooc = Counter()

    per_paper_sets = []
    for p in papers:
        ents = extract_entities(p["abstract"])
        per_paper_sets.append({e for e,_ in ents})

    for phrases in per_paper_sets:
        for a, b in combinations(sorted(phrases), 2):
            cooc[(a, b)] += 1

    for (a, b), c in cooc.items():
        net.add_edge(id_map[a], id_map[b], value=c)

    net.set_options("""
    {
      "physics": {
        "solver": "repulsion",
        "repulsion": {
          "nodeDistance": 250,
          "springLength": 200,
          "damping": 0.5
        }
      }
    }
    """)
    return net

def build_concept_map(phrases, sim_threshold: float = 0.85) -> Network:
    # Individual concept map of each paper. Threshold set to 0.85.
    net = Network(height="600px", width="100%")

    id_map = {}
    texts  = [ph for ph, _ in phrases]
    for idx, (ph, lbl) in enumerate(phrases, start=1):
        id_map[ph] = idx
        net.add_node(idx, label=ph, title=lbl)

    embeddings = embed_model.encode(texts, convert_to_numpy=True, normalize_embeddings=True)

    for i, j in combinations(range(len(texts)), 2):
        sim = float(np.dot(embeddings[i], embeddings[j]))  # since normalized, dot=cosine
        print(f"sim({texts[i]}, {texts[j]}) = {sim:.3f}")
        if sim >= sim_threshold:
            net.add_edge(id_map[texts[i]], id_map[texts[j]], value=sim)

    net.set_options("""
    {
    "physics": {
        "solver": "repulsion",
        "repulsion": {
        "nodeDistance": 200,
        "springLength": 200,
        "damping": 0.5
        }
    }
    }
    """)
    return net