Spaces:
Runtime error
Runtime error
Update
Browse files- Dockerfile +1 -1
- main.py +95 -0
Dockerfile
CHANGED
|
@@ -13,4 +13,4 @@ COPY --chown=user ./requirements.txt requirements.txt
|
|
| 13 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
|
| 15 |
COPY --chown=user . /app
|
| 16 |
-
CMD ["uvicorn", "
|
|
|
|
| 13 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
|
| 15 |
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import os
|
| 4 |
+
import torchaudio
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoProcessor, AutoModelForAudioClassification, pipeline
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
app_dir = Path(__file__).parent
|
| 11 |
+
|
| 12 |
+
# Deepfake model setup
|
| 13 |
+
deepfake_model_path = app_dir / "Deepfake" / "model"
|
| 14 |
+
deepfake_processor = AutoProcessor.from_pretrained(deepfake_model_path)
|
| 15 |
+
deepfake_model = AutoModelForAudioClassification.from_pretrained(
|
| 16 |
+
pretrained_model_name_or_path=deepfake_model_path,
|
| 17 |
+
local_files_only=True,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def prepare_audio(file_path, sampling_rate=16000, duration=10):
|
| 21 |
+
waveform, original_sampling_rate = torchaudio.load(file_path)
|
| 22 |
+
if waveform.shape[0] > 1:
|
| 23 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 24 |
+
if original_sampling_rate != sampling_rate:
|
| 25 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sampling_rate, new_freq=sampling_rate)
|
| 26 |
+
waveform = resampler(waveform)
|
| 27 |
+
chunk_size = sampling_rate * duration
|
| 28 |
+
audio_chunks = []
|
| 29 |
+
for start in range(0, waveform.shape[1], chunk_size):
|
| 30 |
+
chunk = waveform[:, start:start + chunk_size]
|
| 31 |
+
if chunk.shape[1] < chunk_size:
|
| 32 |
+
padding = chunk_size - chunk.shape[1]
|
| 33 |
+
chunk = torch.nn.functional.pad(chunk, (0, padding))
|
| 34 |
+
audio_chunks.append(chunk.squeeze().numpy())
|
| 35 |
+
return audio_chunks
|
| 36 |
+
|
| 37 |
+
def predict_audio(file_path):
|
| 38 |
+
audio_chunks = prepare_audio(file_path)
|
| 39 |
+
predictions = []
|
| 40 |
+
confidences = []
|
| 41 |
+
for chunk in audio_chunks:
|
| 42 |
+
inputs = deepfake_processor(
|
| 43 |
+
chunk, sampling_rate=16000, return_tensors="pt", padding=True
|
| 44 |
+
)
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
outputs = deepfake_model(**inputs)
|
| 47 |
+
logits = outputs.logits
|
| 48 |
+
probabilities = F.softmax(logits, dim=1)
|
| 49 |
+
confidence, predicted_class = torch.max(probabilities, dim=1)
|
| 50 |
+
predictions.append(predicted_class.item())
|
| 51 |
+
confidences.append(confidence.item())
|
| 52 |
+
aggregated_prediction_id = max(set(predictions), key=predictions.count)
|
| 53 |
+
predicted_label = deepfake_model.config.id2label[aggregated_prediction_id]
|
| 54 |
+
average_confidence = sum(confidences) / len(confidences)
|
| 55 |
+
return {
|
| 56 |
+
"predicted_label": predicted_label,
|
| 57 |
+
"average_confidence": average_confidence
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# ScamText model setup
|
| 61 |
+
scamtext_pipe = pipeline("text-classification", model="phishbot/ScamLLM")
|
| 62 |
+
|
| 63 |
+
# Initialize FastAPI
|
| 64 |
+
app = FastAPI()
|
| 65 |
+
|
| 66 |
+
@app.post("/deepfake/infer")
|
| 67 |
+
async def deepfake_infer(file: UploadFile = File(...)):
|
| 68 |
+
temp_file_path = f"temp_{file.filename}"
|
| 69 |
+
with open(temp_file_path, "wb") as temp_file:
|
| 70 |
+
temp_file.write(await file.read())
|
| 71 |
+
try:
|
| 72 |
+
predictions = predict_audio(temp_file_path)
|
| 73 |
+
finally:
|
| 74 |
+
os.remove(temp_file_path)
|
| 75 |
+
return predictions
|
| 76 |
+
|
| 77 |
+
@app.post("/scamtext/infer")
|
| 78 |
+
async def scamtext_infer(data: BaseModel):
|
| 79 |
+
predictions = scamtext_pipe(data.input)
|
| 80 |
+
return predictions
|
| 81 |
+
|
| 82 |
+
@app.get("/deepfake/health")
|
| 83 |
+
async def deepfake_health():
|
| 84 |
+
return {
|
| 85 |
+
"message": "ok",
|
| 86 |
+
"Sound": str(torchaudio.list_audio_backends())
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
@app.get("/scamtext/health")
|
| 90 |
+
async def scamtext_health():
|
| 91 |
+
return {"message": "ok"}
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
import uvicorn
|
| 95 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|