Spaces:
Build error
Build error
Refactor HuggingFace model integration and simplify token handling
Browse files- Replace HuggingFaceEndpoint with InferenceClient for direct API interaction
- Remove environment variable loading and token logging
- Add message conversion between LangChain and HuggingFace formats
- Implement a new /test-token endpoint for authentication verification
- Simplify model invocation and response processing
app.py
CHANGED
|
@@ -1,46 +1,40 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from pydantic import BaseModel
|
| 5 |
-
from
|
| 6 |
|
| 7 |
-
from
|
| 8 |
-
from langchain_core.messages import HumanMessage
|
| 9 |
from langgraph.checkpoint.memory import MemorySaver
|
| 10 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# Obtener token de HuggingFace
|
| 16 |
-
# En HuggingFace Spaces, el token estar谩 disponible como variable de entorno
|
| 17 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") or os.getenv("HF_TOKEN")
|
| 18 |
-
if not HUGGINGFACE_TOKEN:
|
| 19 |
-
raise ValueError("No se encontr贸 la variable de entorno HUGGINGFACE_TOKEN o HF_TOKEN")
|
| 20 |
-
|
| 21 |
-
# Despu茅s de cargar el token
|
| 22 |
-
if HUGGINGFACE_TOKEN:
|
| 23 |
-
print(f"Token cargado: {HUGGINGFACE_TOKEN[:5]}...{HUGGINGFACE_TOKEN[-5:] if len(HUGGINGFACE_TOKEN) > 10 else ''}")
|
| 24 |
-
print(f"Longitud del token: {len(HUGGINGFACE_TOKEN)}")
|
| 25 |
-
else:
|
| 26 |
-
print("隆ADVERTENCIA! No se encontr贸 el token de HuggingFace")
|
| 27 |
-
|
| 28 |
-
# Inicializar el modelo
|
| 29 |
-
model = HuggingFaceEndpoint(
|
| 30 |
-
repo_id="Qwen/Qwen2.5-72B-Instruct",
|
| 31 |
-
huggingfacehub_api_token=HUGGINGFACE_TOKEN,
|
| 32 |
-
max_new_tokens=64,
|
| 33 |
-
temperature=0.5,
|
| 34 |
-
top_p=0.7,
|
| 35 |
)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
workflow = StateGraph(state_schema=MessagesState)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
def call_model(state: MessagesState):
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Definir el nodo en el grafo
|
| 46 |
workflow.add_edge(START, "model")
|
|
@@ -55,28 +49,28 @@ class QueryRequest(BaseModel):
|
|
| 55 |
query: str
|
| 56 |
thread_id: str = "default"
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
app = FastAPI(title="LangChain FastAPI", description="API
|
| 60 |
|
| 61 |
@app.get("/")
|
| 62 |
async def root():
|
| 63 |
-
"""
|
| 64 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 65 |
|
| 66 |
@app.post("/generate")
|
| 67 |
async def generate(request: QueryRequest):
|
| 68 |
-
"""Endpoint
|
| 69 |
try:
|
| 70 |
-
#
|
| 71 |
config = {"configurable": {"thread_id": request.thread_id}}
|
| 72 |
|
| 73 |
-
#
|
| 74 |
input_messages = [HumanMessage(content=request.query)]
|
| 75 |
|
| 76 |
-
#
|
| 77 |
output = graph_app.invoke({"messages": input_messages}, config)
|
| 78 |
|
| 79 |
-
#
|
| 80 |
response = output["messages"][-1].content
|
| 81 |
|
| 82 |
return {
|
|
@@ -86,6 +80,20 @@ async def generate(request: QueryRequest):
|
|
| 86 |
except Exception as e:
|
| 87 |
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
if __name__ == "__main__":
|
| 90 |
import uvicorn
|
| 91 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
|
| 5 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
|
|
|
| 6 |
from langgraph.checkpoint.memory import MemorySaver
|
| 7 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 8 |
|
| 9 |
+
# Inicializar el cliente de HuggingFace
|
| 10 |
+
client = InferenceClient(
|
| 11 |
+
model="Qwen/Qwen2.5-72B-Instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
|
| 14 |
+
# Define the graph
|
| 15 |
workflow = StateGraph(state_schema=MessagesState)
|
| 16 |
|
| 17 |
+
# Define the function that calls the model
|
| 18 |
def call_model(state: MessagesState):
|
| 19 |
+
# Convert LangChain messages to HuggingFace format
|
| 20 |
+
hf_messages = []
|
| 21 |
+
for msg in state["messages"]:
|
| 22 |
+
if isinstance(msg, HumanMessage):
|
| 23 |
+
hf_messages.append({"role": "user", "content": msg.content})
|
| 24 |
+
elif isinstance(msg, AIMessage):
|
| 25 |
+
hf_messages.append({"role": "assistant", "content": msg.content})
|
| 26 |
+
|
| 27 |
+
# Llamar a la API
|
| 28 |
+
response = client.chat_completion(
|
| 29 |
+
messages=hf_messages,
|
| 30 |
+
temperature=0.5,
|
| 31 |
+
max_tokens=64,
|
| 32 |
+
top_p=0.7
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Convertir respuesta a formato LangChain
|
| 36 |
+
ai_message = AIMessage(content=response.choices[0].message.content)
|
| 37 |
+
return {"messages": state["messages"] + [ai_message]}
|
| 38 |
|
| 39 |
# Definir el nodo en el grafo
|
| 40 |
workflow.add_edge(START, "model")
|
|
|
|
| 49 |
query: str
|
| 50 |
thread_id: str = "default"
|
| 51 |
|
| 52 |
+
# Create the FastAPI application
|
| 53 |
+
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
| 54 |
|
| 55 |
@app.get("/")
|
| 56 |
async def root():
|
| 57 |
+
"""Welcome endpoint"""
|
| 58 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 59 |
|
| 60 |
@app.post("/generate")
|
| 61 |
async def generate(request: QueryRequest):
|
| 62 |
+
"""Endpoint to generate text using the language model"""
|
| 63 |
try:
|
| 64 |
+
# Configure the thread ID
|
| 65 |
config = {"configurable": {"thread_id": request.thread_id}}
|
| 66 |
|
| 67 |
+
# Create the input message
|
| 68 |
input_messages = [HumanMessage(content=request.query)]
|
| 69 |
|
| 70 |
+
# Invoke the graph
|
| 71 |
output = graph_app.invoke({"messages": input_messages}, config)
|
| 72 |
|
| 73 |
+
# Get the model response
|
| 74 |
response = output["messages"][-1].content
|
| 75 |
|
| 76 |
return {
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
| 82 |
|
| 83 |
+
# Add an endpoint to test the token directly
|
| 84 |
+
@app.get("/test-token")
|
| 85 |
+
async def test_token():
|
| 86 |
+
"""Endpoint to test the authentication with HuggingFace"""
|
| 87 |
+
try:
|
| 88 |
+
# Make a simple request to verify that the token works
|
| 89 |
+
response = client.chat_completion(
|
| 90 |
+
messages=[{"role": "user", "content": "Hello"}],
|
| 91 |
+
max_tokens=10
|
| 92 |
+
)
|
| 93 |
+
return {"status": "success", "message": "Token is valid", "response": response.choices[0].message.content}
|
| 94 |
+
except Exception as e:
|
| 95 |
+
return {"status": "error", "message": str(e)}
|
| 96 |
+
|
| 97 |
if __name__ == "__main__":
|
| 98 |
import uvicorn
|
| 99 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|