Spaces:
Build error
Build error
Re-enable HuggingFace model integration and restore generate endpoint
Browse files- Uncomment HuggingFace client initialization
- Restore model calling and graph configuration
- Re-implement generate endpoint with improved docstring
- Add detailed error handling for text generation
app.py
CHANGED
|
@@ -7,47 +7,47 @@ from langgraph.checkpoint.memory import MemorySaver
|
|
| 7 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 8 |
|
| 9 |
# Initialize the HuggingFace client
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
# Define the function that calls the model
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
# Define the graph
|
| 37 |
-
|
| 38 |
|
| 39 |
# Define the node in the graph
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
# Add memory
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
# Define the data model for the request
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
# Create the FastAPI application
|
| 53 |
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
|
@@ -57,28 +57,39 @@ async def api_home():
|
|
| 57 |
"""Welcome endpoint"""
|
| 58 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
# Add an endpoint to test the token directly
|
| 84 |
# @app.get("/test-token")
|
|
|
|
| 7 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 8 |
|
| 9 |
# Initialize the HuggingFace client
|
| 10 |
+
client = InferenceClient(
|
| 11 |
+
model="HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 12 |
+
)
|
| 13 |
|
| 14 |
# Define the function that calls the model
|
| 15 |
+
def call_model(state: MessagesState):
|
| 16 |
+
# Convert LangChain messages to HuggingFace format
|
| 17 |
+
hf_messages = []
|
| 18 |
+
for msg in state["messages"]:
|
| 19 |
+
if isinstance(msg, HumanMessage):
|
| 20 |
+
hf_messages.append({"role": "user", "content": msg.content})
|
| 21 |
+
elif isinstance(msg, AIMessage):
|
| 22 |
+
hf_messages.append({"role": "assistant", "content": msg.content})
|
| 23 |
|
| 24 |
+
# Call the API
|
| 25 |
+
response = client.chat_completion(
|
| 26 |
+
messages=hf_messages,
|
| 27 |
+
temperature=0.5,
|
| 28 |
+
max_tokens=64,
|
| 29 |
+
top_p=0.7
|
| 30 |
+
)
|
| 31 |
|
| 32 |
+
# Convert the response to LangChain format
|
| 33 |
+
ai_message = AIMessage(content=response.choices[0].message.content)
|
| 34 |
+
return {"messages": state["messages"] + [ai_message]}
|
| 35 |
|
| 36 |
# Define the graph
|
| 37 |
+
workflow = StateGraph(state_schema=MessagesState)
|
| 38 |
|
| 39 |
# Define the node in the graph
|
| 40 |
+
workflow.add_edge(START, "model")
|
| 41 |
+
workflow.add_node("model", call_model)
|
| 42 |
|
| 43 |
# Add memory
|
| 44 |
+
memory = MemorySaver()
|
| 45 |
+
graph_app = workflow.compile(checkpointer=memory)
|
| 46 |
|
| 47 |
# Define the data model for the request
|
| 48 |
+
class QueryRequest(BaseModel):
|
| 49 |
+
query: str
|
| 50 |
+
thread_id: str = "default"
|
| 51 |
|
| 52 |
# Create the FastAPI application
|
| 53 |
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
|
|
|
| 57 |
"""Welcome endpoint"""
|
| 58 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 59 |
|
| 60 |
+
# Generate endpoint
|
| 61 |
+
@app.post("/generate")
|
| 62 |
+
async def generate(request: QueryRequest):
|
| 63 |
+
"""
|
| 64 |
+
Endpoint to generate text using the language model
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
request: QueryRequest
|
| 68 |
+
query: str
|
| 69 |
+
thread_id: str = "default"
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
dict: A dictionary containing the generated text and the thread ID
|
| 73 |
+
"""
|
| 74 |
+
try:
|
| 75 |
+
# Configure the thread ID
|
| 76 |
+
config = {"configurable": {"thread_id": request.thread_id}}
|
| 77 |
|
| 78 |
+
# Create the input message
|
| 79 |
+
input_messages = [HumanMessage(content=request.query)]
|
| 80 |
|
| 81 |
+
# Invoke the graph
|
| 82 |
+
output = graph_app.invoke({"messages": input_messages}, config)
|
| 83 |
|
| 84 |
+
# Get the model response
|
| 85 |
+
response = output["messages"][-1].content
|
| 86 |
|
| 87 |
+
return {
|
| 88 |
+
"generated_text": response,
|
| 89 |
+
"thread_id": request.thread_id
|
| 90 |
+
}
|
| 91 |
+
except Exception as e:
|
| 92 |
+
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
| 93 |
|
| 94 |
# Add an endpoint to test the token directly
|
| 95 |
# @app.get("/test-token")
|