File size: 10,057 Bytes
1f87684 0759571 1f87684 3356f4d 1f87684 0759571 aa3631e 0759571 3356f4d 0759571 3356f4d 0759571 3356f4d 0759571 3356f4d 1f87684 0759571 aa3631e 1f87684 aa3631e 1f87684 aa3631e 1f87684 aa3631e 1f87684 aa3631e 1f87684 aa3631e 1f87684 0759571 aa3631e 1f87684 aa3631e 1f87684 aa3631e 0759571 aa3631e 1f87684 aa3631e 1f87684 0759571 aa3631e 0759571 aa3631e 3356f4d 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 3356f4d 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 aa3631e 0759571 3356f4d 0759571 aa3631e 0759571 aa3631e 3356f4d aa3631e 3356f4d aa3631e 0759571 1f87684 0759571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
# Set cache directory for Spaces
os.environ['TRANSFORMERS_CACHE'] = '/tmp/cache'
class HunyuanTranslator:
def __init__(self, model_name: str = "tencent/Hunyuan-MT-7B-fp8"):
self.model_name = model_name
self.tokenizer = None
self.model = None
self._load_model()
def _load_model(self):
"""Load the pre-quantized FP8 model"""
print("Loading Hunyuan-MT FP8 model...")
try:
# Load tokenizer first
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
cache_dir='/tmp/cache',
trust_remote_code=True
)
# For Compressed Tensors models, use the standard from_pretrained
# The quantization is automatically handled by the model files
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map="auto",
torch_dtype=torch.float16, # Use fp16 as base dtype
trust_remote_code=True,
cache_dir='/tmp/cache'
)
print("FP8 model loaded successfully!")
print(f"Model device: {self.model.device}")
print(f"Model dtype: {next(self.model.parameters()).dtype}")
except Exception as e:
print(f"Error loading model: {e}")
raise Exception(f"Could not load the Hunyuan-MT model: {str(e)}")
def translate_ja_to_en(self, input_text: str) -> str:
"""Translate Japanese to English using FP8 model"""
if not input_text or input_text.strip() == "":
return "Please enter some Japanese text to translate."
# Limit input length for Spaces
if len(input_text) > 1500:
return "Input too long. Please keep under 1500 characters for this demo."
try:
# Clean and prepare the input text
input_text = input_text.strip()
# Create a clear translation prompt
prompt = f"""Translate the following Japanese text to English. Provide only the translation without any additional explanations or notes.
Japanese: {input_text}
English:"""
# Tokenize the input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
# Move inputs to the same device as model
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
# Generate translation
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
num_return_sequences=1
)
# Decode the output
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the translation part (remove the prompt)
if prompt in generated_text:
translation = generated_text.replace(prompt, "").strip()
else:
# If prompt isn't found, try to extract after "English:"
if "English:" in generated_text:
translation = generated_text.split("English:")[-1].strip()
else:
translation = generated_text.strip()
# Clean up the translation
translation = translation.split('\n')[0].strip() # Take first line only
translation = translation.replace('"', '').strip()
return translation if translation else "No translation generated. Please try again."
except Exception as e:
return f"Error during translation: {str(e)}"
def create_translation_interface():
"""Create the Gradio interface for Japanese to English translation"""
# Initialize translator
try:
translator = HunyuanTranslator()
def translate_function(input_text):
return translator.translate_ja_to_en(input_text)
except Exception as e:
print(f"Failed to initialize translator: {e}")
def translate_function(input_text):
return f"Model initialization failed: {str(e)}\n\nPlease check the Space logs for details."
# Custom CSS for better appearance
custom_css = """
.gradio-container {
max-width: 900px !important;
margin: 0 auto;
}
.container {
max-width: 900px;
margin: auto;
padding: 20px;
}
.japanese-text {
font-family: "Hiragino Sans", "Yu Gothic", "Meiryo", sans-serif;
}
.translation-box {
border-left: 3px solid #4CAF50;
padding-left: 15px;
}
"""
# Create Gradio interface
with gr.Blocks(
title="Japanese to English Translation - Hunyuan-MT FP8",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
gr.Markdown(
"""
# 🇯🇵 → 🇺🇸 Japanese to English Translation
**Model:** `tencent/Hunyuan-MT-7B-fp8` • **Technology:** FP8 Quantization
*Fast, high-quality Japanese to English translation using optimized FP8 model*
"""
)
with gr.Row(equal_height=False):
with gr.Column(scale=1):
gr.Markdown("### 📥 Japanese Input")
input_text = gr.Textbox(
label="",
placeholder="日本語のテキストを入力してください...\n(Enter Japanese text here)",
lines=6,
max_lines=8,
show_copy_button=True,
elem_classes=["japanese-text"]
)
with gr.Row():
translate_btn = gr.Button(
"🚀 Translate",
variant="primary",
size="lg",
scale=2
)
clear_btn = gr.Button(
"🗑️ Clear",
variant="secondary",
size="lg",
scale=1
)
with gr.Column(scale=1):
gr.Markdown("### 📤 English Translation")
output_text = gr.Textbox(
label="",
placeholder="Translation will appear here...",
lines=6,
max_lines=8,
show_copy_button=True,
elem_classes=["translation-box"]
)
# Examples section
gr.Markdown("### 💡 Example Translations")
examples = gr.Examples(
examples=[
["こんにちは、元気ですか?"],
["今日は良い天気ですね。"],
["機械学習と人工知能は現代技術の重要な分野です。"],
["このレストランの料理はとても美味しいです。"],
["明日の会議は午後二時から始まります。"],
["日本の文化は非常に興味深いと思います。"],
["新しいプロジェクトの提案書を作成しました。"],
["電車の遅延により、到着が30分ほど遅れます。"]
],
inputs=input_text,
outputs=output_text,
fn=translate_function,
cache_examples=False,
label="Click any example to try:"
)
# Connect the buttons
translate_btn.click(
fn=translate_function,
inputs=input_text,
outputs=output_text,
api_name="translate"
)
clear_btn.click(
fn=lambda: ("", ""),
inputs=[],
outputs=[input_text, output_text]
)
# Also allow Enter key to trigger translation
input_text.submit(
fn=translate_function,
inputs=input_text,
outputs=output_text
)
# Technical details
gr.Markdown(
"""
---
### 🛠️ Technical Information
**Model Details:**
- **Base Model**: Hunyuan-MT 7B
- **Quantization**: FP8 (8-bit floating point)
- **Memory Usage**: ~3-4GB
- **Specialization**: Japanese ↔ English translation
**Optimization Features:**
- ✅ FP8 quantization for faster inference
- ✅ GPU acceleration support
- ✅ Efficient memory usage
**Usage Tips:**
- Keep inputs under 1500 characters for best results
- Translation takes 5-15 seconds typically
- Model works best with complete sentences
- Handles technical and casual Japanese well
"""
)
return demo
# For Hugging Face Spaces compatibility
def get_space_app():
"""Function that returns the Gradio app for Spaces"""
return create_translation_interface()
# Launch the app
if __name__ == "__main__":
demo = create_translation_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |