import gradio as gr from transformers import pipeline # Wybierz lżejszy model model_name = "facebook/deit-tiny-patch16-224" pipe = pipeline("image-classification", model=model_name) def classify_image(img): results = pipe(img) return {res["label"]: float(res["score"]) for res in results} demo = gr.Interface( fn=classify_image, inputs=gr.Image(type="filepath"), outputs=gr.Label(num_top_classes=5), title="Lekka klasyfikacja obrazów", description=f"Model: {model_name}" ) demo.launch()