Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,10 @@ import base64
|
|
| 6 |
import logging
|
| 7 |
from scipy.io import wavfile
|
| 8 |
from typing import Tuple, Dict, Any
|
| 9 |
-
from transformers import AutoTokenizer
|
| 10 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# --- Logging ---
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -16,25 +18,26 @@ logger.addHandler(logging.StreamHandler())
|
|
| 16 |
|
| 17 |
# --- TTS Wrapper ---
|
| 18 |
class IndicParlerTTS:
|
| 19 |
-
def __init__(self, model_name: str = "ai4bharat/indic-parler-tts"):
|
|
|
|
| 20 |
self.model_name = model_name
|
| 21 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
self.model = None
|
| 23 |
self.tokenizer = None
|
| 24 |
self.description_tokenizer = None
|
| 25 |
-
self.sample_rate = 24000 # Default for
|
|
|
|
|
|
|
| 26 |
self._load_model()
|
| 27 |
|
| 28 |
-
# Supported languages (expanded
|
| 29 |
self.language_codes = {
|
| 30 |
-
"as": "Assamese", "bn": "Bengali", "
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"mr": "Marathi", "ne": "Nepali", "or": "Odia", "sa": "Sanskrit",
|
| 34 |
-
"sat": "Santali", "sd": "Sindhi", "ta": "Tamil", "te": "Telugu", "ur": "Urdu"
|
| 35 |
}
|
| 36 |
|
| 37 |
-
# Voice style mappings to descriptive terms
|
| 38 |
self.voice_map = {
|
| 39 |
"neutral": "neutral",
|
| 40 |
"formal": "formal and clear",
|
|
@@ -43,74 +46,116 @@ class IndicParlerTTS:
|
|
| 43 |
"emotional": "emotional and varied"
|
| 44 |
}
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def _load_model(self):
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
self.
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
-
logger.exception("Failed to load
|
| 64 |
self.model = None
|
| 65 |
-
self.tokenizer = None
|
| 66 |
-
self.description_tokenizer = None
|
| 67 |
|
| 68 |
def generate(self, text: str, language: str = "hi", voice: str = "neutral",
|
| 69 |
pitch: float = 1.0, speed: float = 1.0, emotion: float = 0.5,
|
| 70 |
-
reverb: float = 0.0
|
| 71 |
"""
|
| 72 |
-
Generate speech using the
|
| 73 |
Returns int16 numpy audio and sample rate.
|
|
|
|
| 74 |
"""
|
| 75 |
-
if self.model is None
|
| 76 |
raise RuntimeError("Model not available")
|
| 77 |
|
| 78 |
if not text.strip():
|
| 79 |
raise ValueError("Empty text provided")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
# Tokenize
|
| 97 |
-
prompt_input_ids = self.tokenizer(text, return_tensors="pt").input_ids.to(self.device)
|
| 98 |
-
prompt_attention_mask = self.tokenizer(text, return_tensors="pt").attention_mask.to(self.device)
|
| 99 |
-
|
| 100 |
-
description_input_ids = self.description_tokenizer(description, return_tensors="pt").input_ids.to(self.device)
|
| 101 |
-
description_attention_mask = self.description_tokenizer(description, return_tensors="pt").attention_mask.to(self.device)
|
| 102 |
-
|
| 103 |
-
with torch.no_grad():
|
| 104 |
-
audio_tensor = self.model.generate(
|
| 105 |
-
input_ids=description_input_ids,
|
| 106 |
-
attention_mask=description_attention_mask,
|
| 107 |
-
prompt_input_ids=prompt_input_ids,
|
| 108 |
-
prompt_attention_mask=prompt_attention_mask
|
| 109 |
)
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
audio = np.clip(audio, -1.0, 1.0)
|
| 115 |
audio_int16 = (audio * 32767).astype(np.int16)
|
| 116 |
|
|
@@ -126,13 +171,20 @@ def wav_bytes_from_numpy(audio_np: np.ndarray, sample_rate: int) -> bytes:
|
|
| 126 |
def encode_wav_base64(audio_bytes: bytes) -> str:
|
| 127 |
return base64.b64encode(audio_bytes).decode("utf-8")
|
| 128 |
|
| 129 |
-
# Instantiate TTS
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# --- Gradio functions / API functions ---
|
| 133 |
-
def synthesize_speech(text: str, language: str, voice: str,
|
| 134 |
pitch: float, speed: float, emotion: float,
|
| 135 |
-
reverb: float
|
|
|
|
| 136 |
try:
|
| 137 |
if not text or not text.strip():
|
| 138 |
return None, "Please enter text to synthesize."
|
|
@@ -140,26 +192,34 @@ def synthesize_speech(text: str, language: str, voice: str,
|
|
| 140 |
if len(text) > 4000:
|
| 141 |
return None, "Text too long. Maximum 4000 characters supported."
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
audio_np, sr = tts.generate(text=text, language=language, voice=voice,
|
| 144 |
pitch=pitch, speed=speed, emotion=emotion,
|
| 145 |
-
reverb=reverb
|
| 146 |
|
| 147 |
-
|
|
|
|
| 148 |
except Exception as e:
|
| 149 |
logger.exception("Error in synthesize_speech:")
|
| 150 |
return None, f"Error: {str(e)}"
|
| 151 |
|
| 152 |
-
def api_synthesize(text: str, language: str = "hi", voice: str = "neutral",
|
| 153 |
pitch: float = 1.0, speed: float = 1.0, emotion: float = 0.5,
|
| 154 |
-
reverb: float = 0.0
|
|
|
|
| 155 |
try:
|
| 156 |
if not text or not text.strip():
|
| 157 |
return {"error": "Please provide non-empty text."}
|
| 158 |
|
|
|
|
|
|
|
|
|
|
| 159 |
audio_np, sr = tts.generate(text=text, language=language, voice=voice,
|
| 160 |
pitch=float(pitch), speed=float(speed),
|
| 161 |
-
emotion=float(emotion), reverb=float(reverb)
|
| 162 |
-
background_noise=float(background_noise))
|
| 163 |
|
| 164 |
wav_bytes = wav_bytes_from_numpy(audio_np, sr)
|
| 165 |
return {
|
|
@@ -196,20 +256,25 @@ with gr.Blocks(
|
|
| 196 |
with gr.Row():
|
| 197 |
with gr.Column(scale=2):
|
| 198 |
text_input = gr.Textbox(label="Enter Text", placeholder="Type text here...", lines=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
language_dropdown = gr.Dropdown(
|
| 200 |
choices=list(tts.language_codes.keys()),
|
| 201 |
value="hi",
|
| 202 |
label="Language (code)",
|
| 203 |
-
info="Select language code (e.g. hi, bn, ta
|
| 204 |
)
|
| 205 |
voice_dropdown = gr.Dropdown(choices=["neutral", "formal", "casual", "expressive", "emotional"],
|
| 206 |
value="neutral", label="Voice Style")
|
| 207 |
with gr.Column(scale=1):
|
| 208 |
-
pitch_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Pitch")
|
| 209 |
-
speed_slider = gr.Slider(0.3, 3.0, value=1.0, step=0.1, label="Speed")
|
| 210 |
-
emotion_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Emotion")
|
| 211 |
-
reverb_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Reverb")
|
| 212 |
-
noise_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Background Noise")
|
| 213 |
|
| 214 |
with gr.Row():
|
| 215 |
generate_btn = gr.Button("🎵 Generate Speech", variant="primary")
|
|
@@ -222,7 +287,7 @@ with gr.Blocks(
|
|
| 222 |
# Bind UI
|
| 223 |
generate_btn.click(
|
| 224 |
fn=synthesize_speech,
|
| 225 |
-
inputs=[text_input, language_dropdown, voice_dropdown, pitch_slider, speed_slider, emotion_slider, reverb_slider
|
| 226 |
outputs=[audio_output, status_output]
|
| 227 |
)
|
| 228 |
|
|
|
|
| 6 |
import logging
|
| 7 |
from scipy.io import wavfile
|
| 8 |
from typing import Tuple, Dict, Any
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
import os
|
| 13 |
|
| 14 |
# --- Logging ---
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 18 |
|
| 19 |
# --- TTS Wrapper ---
|
| 20 |
class IndicParlerTTS:
|
| 21 |
+
def __init__(self, model_type: str = "parler", model_name: str = "ai4bharat/indic-parler-tts"):
|
| 22 |
+
self.model_type = model_type # "parler" or "indicf5"
|
| 23 |
self.model_name = model_name
|
| 24 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
self.model = None
|
| 26 |
self.tokenizer = None
|
| 27 |
self.description_tokenizer = None
|
| 28 |
+
self.sample_rate = 24000 # Default for both
|
| 29 |
+
self.ref_audio_path = None
|
| 30 |
+
self.ref_text = None
|
| 31 |
self._load_model()
|
| 32 |
|
| 33 |
+
# Supported languages (expanded for IndicF5)
|
| 34 |
self.language_codes = {
|
| 35 |
+
"as": "Assamese", "bn": "Bengali", "gu": "Gujarati", "hi": "Hindi",
|
| 36 |
+
"kn": "Kannada", "ml": "Malayalam", "mr": "Marathi", "or": "Odia",
|
| 37 |
+
"pa": "Punjabi", "ta": "Tamil", "te": "Telugu"
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
|
| 40 |
+
# Voice style mappings to descriptive terms (for Parler-TTS)
|
| 41 |
self.voice_map = {
|
| 42 |
"neutral": "neutral",
|
| 43 |
"formal": "formal and clear",
|
|
|
|
| 46 |
"emotional": "emotional and varied"
|
| 47 |
}
|
| 48 |
|
| 49 |
+
# For IndicF5, map voices to reference prompts (simplified; expand as needed)
|
| 50 |
+
self.ref_map = {
|
| 51 |
+
"neutral": ("prompts/PAN_F_HAPPY_00001.wav", "ਭਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ ਹਨ।"),
|
| 52 |
+
# Add more mappings, e.g., for other styles/languages from prompts/
|
| 53 |
+
# "formal": ("path/to/formal.wav", "ref text"),
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
def _load_model(self):
|
| 57 |
try:
|
| 58 |
+
if self.model_type == "parler":
|
| 59 |
+
logger.info(f"Loading Indic Parler-TTS ({self.model_name}) on {self.device}")
|
| 60 |
+
self.model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 61 |
+
self.model_name
|
| 62 |
+
).to(self.device)
|
| 63 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 64 |
+
try:
|
| 65 |
+
self.description_tokenizer = AutoTokenizer.from_pretrained(
|
| 66 |
+
self.model.config.text_encoder._name_or_path
|
| 67 |
+
)
|
| 68 |
+
except Exception:
|
| 69 |
+
logger.warning("Falling back to main tokenizer for descriptions")
|
| 70 |
+
self.description_tokenizer = self.tokenizer
|
| 71 |
+
self.sample_rate = self.model.config.sampling_rate
|
| 72 |
+
logger.info("✅ Indic Parler-TTS loaded")
|
| 73 |
+
elif self.model_type == "indicf5":
|
| 74 |
+
logger.info(f"Loading IndicF5 on {self.device}")
|
| 75 |
+
self.model = AutoModel.from_pretrained("ai4bharat/IndicF5", trust_remote_code=True).to(self.device)
|
| 76 |
+
|
| 77 |
+
# Download default reference for neutral (expand for other voices)
|
| 78 |
+
default_ref_path = "prompts/PAN_F_HAPPY_00001.wav"
|
| 79 |
+
self.ref_audio_path = hf_hub_download(
|
| 80 |
+
repo_id="ai4bharat/IndicF5",
|
| 81 |
+
filename=default_ref_path,
|
| 82 |
+
local_dir="./prompts"
|
| 83 |
)
|
| 84 |
+
self.ref_text = "ਭਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ ਹਨ।"
|
| 85 |
+
|
| 86 |
+
# For other voices, override in generate()
|
| 87 |
+
self.sample_rate = 24000
|
| 88 |
+
logger.info("✅ IndicF5 loaded with default reference")
|
| 89 |
+
else:
|
| 90 |
+
raise ValueError(f"Unsupported model_type: {self.model_type}")
|
| 91 |
except Exception as e:
|
| 92 |
+
logger.exception(f"Failed to load {self.model_type} model")
|
| 93 |
self.model = None
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def generate(self, text: str, language: str = "hi", voice: str = "neutral",
|
| 96 |
pitch: float = 1.0, speed: float = 1.0, emotion: float = 0.5,
|
| 97 |
+
reverb: float = 0.0) -> Tuple[np.ndarray, int]:
|
| 98 |
"""
|
| 99 |
+
Generate speech using the selected model.
|
| 100 |
Returns int16 numpy audio and sample rate.
|
| 101 |
+
For IndicF5: Uses reference-based generation for humanized output.
|
| 102 |
"""
|
| 103 |
+
if self.model is None:
|
| 104 |
raise RuntimeError("Model not available")
|
| 105 |
|
| 106 |
if not text.strip():
|
| 107 |
raise ValueError("Empty text provided")
|
| 108 |
|
| 109 |
+
if self.model_type == "parler":
|
| 110 |
+
# Existing Parler-TTS logic (without noise)
|
| 111 |
+
full_lang = self.language_codes.get(language, "Indian")
|
| 112 |
+
voice_desc = self.voice_map.get(voice, "neutral") # Safe get to avoid errors
|
| 113 |
+
|
| 114 |
+
pitch_desc = "high" if pitch > 1.2 else "low" if pitch < 0.8 else "balanced"
|
| 115 |
+
speed_desc = "fast" if speed > 1.3 else "slow" if speed < 0.7 else "moderate"
|
| 116 |
+
emotion_desc = "highly expressive" if emotion > 0.7 else "slightly expressive" if emotion > 0.3 else "neutral"
|
| 117 |
+
reverb_desc = "with noticeable reverb as if in a room" if reverb > 0.5 else "clear and close-up"
|
| 118 |
+
|
| 119 |
+
description = (
|
| 120 |
+
f"A {full_lang} speaker with a {voice_desc} voice, {pitch_desc} pitch, "
|
| 121 |
+
f"{speed_desc} speaking pace, {emotion_desc} delivery, {reverb_desc}."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
+
# Tokenize
|
| 125 |
+
prompt_input_ids = self.tokenizer(text, return_tensors="pt").input_ids.to(self.device)
|
| 126 |
+
prompt_attention_mask = self.tokenizer(text, return_tensors="pt").attention_mask.to(self.device)
|
| 127 |
+
|
| 128 |
+
description_input_ids = self.description_tokenizer(description, return_tensors="pt").input_ids.to(self.device)
|
| 129 |
+
description_attention_mask = self.description_tokenizer(description, return_tensors="pt").attention_mask.to(self.device)
|
| 130 |
+
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
audio_tensor = self.model.generate(
|
| 133 |
+
input_ids=description_input_ids,
|
| 134 |
+
attention_mask=description_attention_mask,
|
| 135 |
+
prompt_input_ids=prompt_input_ids,
|
| 136 |
+
prompt_attention_mask=prompt_attention_mask
|
| 137 |
+
)
|
| 138 |
|
| 139 |
+
audio = audio_tensor.cpu().numpy().squeeze()
|
| 140 |
+
|
| 141 |
+
elif self.model_type == "indicf5":
|
| 142 |
+
# IndicF5 logic: Use reference for voice style (humanized output)
|
| 143 |
+
# For now, use default ref; map voice to specific ref if available
|
| 144 |
+
ref_path, ref_txt = self.ref_map.get(voice, (self.ref_audio_path, self.ref_text))
|
| 145 |
+
|
| 146 |
+
with torch.no_grad():
|
| 147 |
+
audio_float = self.model(
|
| 148 |
+
text,
|
| 149 |
+
ref_audio_path=ref_path,
|
| 150 |
+
ref_text=ref_txt
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Normalize if needed (per example)
|
| 154 |
+
if audio_float.dtype == np.int16:
|
| 155 |
+
audio_float = audio_float.astype(np.float32) / 32768.0
|
| 156 |
+
audio = audio_float
|
| 157 |
+
|
| 158 |
+
# Common post-processing: float32 [-1,1] → int16
|
| 159 |
audio = np.clip(audio, -1.0, 1.0)
|
| 160 |
audio_int16 = (audio * 32767).astype(np.int16)
|
| 161 |
|
|
|
|
| 171 |
def encode_wav_base64(audio_bytes: bytes) -> str:
|
| 172 |
return base64.b64encode(audio_bytes).decode("utf-8")
|
| 173 |
|
| 174 |
+
# Instantiate TTS (default to Parler; will reinstantiate per selection)
|
| 175 |
+
def get_tts(model_type):
|
| 176 |
+
if model_type == "indicf5":
|
| 177 |
+
return IndicParlerTTS(model_type="indicf5")
|
| 178 |
+
else:
|
| 179 |
+
return IndicParlerTTS(model_type="parler")
|
| 180 |
+
|
| 181 |
+
tts = get_tts("parler")
|
| 182 |
|
| 183 |
# --- Gradio functions / API functions ---
|
| 184 |
+
def synthesize_speech(text: str, model_type: str, language: str, voice: str,
|
| 185 |
pitch: float, speed: float, emotion: float,
|
| 186 |
+
reverb: float):
|
| 187 |
+
global tts
|
| 188 |
try:
|
| 189 |
if not text or not text.strip():
|
| 190 |
return None, "Please enter text to synthesize."
|
|
|
|
| 192 |
if len(text) > 4000:
|
| 193 |
return None, "Text too long. Maximum 4000 characters supported."
|
| 194 |
|
| 195 |
+
# Re-instantiate TTS if model changed
|
| 196 |
+
if tts.model_type != model_type:
|
| 197 |
+
tts = get_tts(model_type)
|
| 198 |
+
|
| 199 |
audio_np, sr = tts.generate(text=text, language=language, voice=voice,
|
| 200 |
pitch=pitch, speed=speed, emotion=emotion,
|
| 201 |
+
reverb=reverb)
|
| 202 |
|
| 203 |
+
model_note = " (Parler-TTS: Style via description)" if model_type == "parler" else " (IndicF5: Humanized via reference voice)"
|
| 204 |
+
return (sr, audio_np), f"Speech generated successfully{model_note}."
|
| 205 |
except Exception as e:
|
| 206 |
logger.exception("Error in synthesize_speech:")
|
| 207 |
return None, f"Error: {str(e)}"
|
| 208 |
|
| 209 |
+
def api_synthesize(text: str, model_type: str = "parler", language: str = "hi", voice: str = "neutral",
|
| 210 |
pitch: float = 1.0, speed: float = 1.0, emotion: float = 0.5,
|
| 211 |
+
reverb: float = 0.0) -> Dict[str, Any]:
|
| 212 |
+
global tts
|
| 213 |
try:
|
| 214 |
if not text or not text.strip():
|
| 215 |
return {"error": "Please provide non-empty text."}
|
| 216 |
|
| 217 |
+
if tts.model_type != model_type:
|
| 218 |
+
tts = get_tts(model_type)
|
| 219 |
+
|
| 220 |
audio_np, sr = tts.generate(text=text, language=language, voice=voice,
|
| 221 |
pitch=float(pitch), speed=float(speed),
|
| 222 |
+
emotion=float(emotion), reverb=float(reverb))
|
|
|
|
| 223 |
|
| 224 |
wav_bytes = wav_bytes_from_numpy(audio_np, sr)
|
| 225 |
return {
|
|
|
|
| 256 |
with gr.Row():
|
| 257 |
with gr.Column(scale=2):
|
| 258 |
text_input = gr.Textbox(label="Enter Text", placeholder="Type text here...", lines=4)
|
| 259 |
+
model_dropdown = gr.Dropdown(
|
| 260 |
+
choices=["Indic Parler-TTS", "IndicF5 (Humanized)"],
|
| 261 |
+
value="Indic Parler-TTS",
|
| 262 |
+
label="Model",
|
| 263 |
+
info="Parler-TTS: Style via text description. IndicF5: Near-human via voice reference (combined for ultimate humanization)."
|
| 264 |
+
)
|
| 265 |
language_dropdown = gr.Dropdown(
|
| 266 |
choices=list(tts.language_codes.keys()),
|
| 267 |
value="hi",
|
| 268 |
label="Language (code)",
|
| 269 |
+
info="Select language code (e.g. hi, bn, ta). Model auto-detects from text."
|
| 270 |
)
|
| 271 |
voice_dropdown = gr.Dropdown(choices=["neutral", "formal", "casual", "expressive", "emotional"],
|
| 272 |
value="neutral", label="Voice Style")
|
| 273 |
with gr.Column(scale=1):
|
| 274 |
+
pitch_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Pitch (normal: 1.0)")
|
| 275 |
+
speed_slider = gr.Slider(0.3, 3.0, value=1.0, step=0.1, label="Speed (normal: 1.0)")
|
| 276 |
+
emotion_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Emotion (normal: 0.5)")
|
| 277 |
+
reverb_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Reverb (normal: 0.0)")
|
|
|
|
| 278 |
|
| 279 |
with gr.Row():
|
| 280 |
generate_btn = gr.Button("🎵 Generate Speech", variant="primary")
|
|
|
|
| 287 |
# Bind UI
|
| 288 |
generate_btn.click(
|
| 289 |
fn=synthesize_speech,
|
| 290 |
+
inputs=[text_input, model_dropdown, language_dropdown, voice_dropdown, pitch_slider, speed_slider, emotion_slider, reverb_slider],
|
| 291 |
outputs=[audio_output, status_output]
|
| 292 |
)
|
| 293 |
|