Spaces:
Runtime error
Runtime error
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
| from diffusers.utils import load_image | |
| from PIL import Image | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import gradio as gr | |
| controlnet_conditioning_scale = 0.5 # recommended for good generalization | |
| controlnet = ControlNetModel.from_pretrained( | |
| "diffusers/controlnet-canny-sdxl-1.0", | |
| torch_dtype=torch.float16 | |
| ) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "mann-e/Mann-E_Dreams", | |
| controlnet=controlnet, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| low_threshold = 100 | |
| high_threshold = 200 | |
| def get_canny_filter(image): | |
| if not isinstance(image, np.ndarray): | |
| image = np.array(image) | |
| image = cv2.Canny(image, low_threshold, high_threshold) | |
| image = image[:, :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| canny_image = Image.fromarray(image) | |
| return canny_image | |
| def process(input_image, prompt): | |
| canny_image = get_canny_filter(input_image) | |
| images = pipe( | |
| prompt,image=canny_image, controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| ).images | |
| return [canny_image,images[0]] | |
| block = gr.Blocks().queue() | |
| with block: | |
| gr.Markdown("## ControlNet SDXL Canny") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This is a demo for ControlNet Mann-E Dreams (SDXL based), which is a neural network structure to control Stable Diffusion XL model by adding extra condition such as canny edge detection. | |
| </p> | |
| ''') | |
| gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/controlnet-sdxl-canny?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(source='upload', type="numpy") | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button(label="Run") | |
| with gr.Column(): | |
| result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid_cols=2, height='auto') | |
| ips = [input_image, prompt] | |
| run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
| block.launch(debug = True, show_error=True) |