Spaces:
Runtime error
Runtime error
| from flask import Flask, request, jsonify, send_file | |
| from PIL import Image | |
| import base64 | |
| import spaces | |
| from loadimg import load_img | |
| from io import BytesIO | |
| import numpy as np | |
| import insightface | |
| import onnxruntime as ort | |
| import huggingface_hub | |
| from SegCloth import segment_clothing | |
| from transparent_background import Remover | |
| import threading | |
| import logging | |
| import uuid | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| app = Flask(__name__) | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| # Load the model lazily | |
| model = None | |
| detector = None | |
| def load_model(): | |
| global model, detector | |
| path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") | |
| options = ort.SessionOptions() | |
| options.intra_op_num_threads = 8 | |
| options.inter_op_num_threads = 8 | |
| # Ensure the session is created with CPUExecutionProvider only | |
| session = ort.InferenceSession( | |
| path, sess_options=options, providers=["CPUExecutionProvider"] | |
| ) | |
| model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) | |
| model.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) | |
| detector = model | |
| logging.info("Model loaded successfully.") | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| # Load BiRefNet for segmentation, set to CPU | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet", trust_remote_code=True | |
| ) | |
| birefnet.to("cpu") # Move the model to CPU | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| # Function to decode a base64 image to PIL.Image.Image | |
| def decode_image_from_base64(image_data): | |
| image_data = base64.b64decode(image_data) | |
| image = Image.open(BytesIO(image_data)).convert("RGB") | |
| return image | |
| # Function to encode a PIL image to base64 | |
| def encode_image_to_base64(image): | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA | |
| return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
| # Remove background using BiRefNet on CPU | |
| def rm_background(image): | |
| im = load_img(image, output_type="pil") | |
| im = im.convert("RGB") | |
| image_size = im.size | |
| origin = im.copy() | |
| image = load_img(im) | |
| input_images = transform_image(image).unsqueeze(0).to("cpu") # Ensure CPU usage | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| image.putalpha(mask) | |
| return image | |
| # Remove background with the transparent background remover | |
| def remove_background(image): | |
| remover = Remover() | |
| if isinstance(image, Image.Image): | |
| output = remover.process(image) | |
| elif isinstance(image, np.ndarray): | |
| image_pil = Image.fromarray(image) | |
| output = remover.process(image_pil) | |
| else: | |
| raise TypeError("Unsupported image type") | |
| return output | |
| def detect_and_segment_persons(image, clothes): | |
| img = np.array(image) | |
| img = img[:, :, ::-1] # RGB -> BGR | |
| if detector is None: | |
| load_model() # Ensure the model is loaded | |
| bboxes, kpss = detector.detect(img) | |
| if bboxes.shape[0] == 0: | |
| return [save_image(rm_background(image))] | |
| height, width, _ = img.shape | |
| bboxes = np.round(bboxes[:, :4]).astype(int) | |
| bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width) | |
| bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height) | |
| bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width) | |
| bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height) | |
| all_segmented_images = [] | |
| for i in range(bboxes.shape[0]): | |
| bbox = bboxes[i] | |
| x1, y1, x2, y2 = bbox | |
| person_img = img[y1:y2, x1:x2] | |
| pil_img = Image.fromarray(person_img[:, :, ::-1]) | |
| img_rm_background = rm_background(pil_img) | |
| segmented_result = segment_clothing(img_rm_background, clothes) | |
| image_paths = [save_image(img) for img in segmented_result] | |
| print(image_paths) | |
| all_segmented_images.extend(image_paths) | |
| return all_segmented_images | |
| def welcome(): | |
| return "Welcome to Clothing Segmentation API" | |
| def detect(): | |
| try: | |
| data = request.json | |
| image_base64 = data['image'] | |
| image = decode_image_from_base64(image_base64) | |
| clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"] | |
| result = detect_and_segment_persons(image, clothes) | |
| return jsonify({'images': result}) | |
| except Exception as e: | |
| logging.error(f"Error occurred: {e}") | |
| return jsonify({'error': str(e)}), 500 | |
| # Route to retrieve the generated image | |
| def get_image(image_id): | |
| # Construct the full image path | |
| image_path = image_id # Ensure the file name matches the one used during saving | |
| # Return the image | |
| try: | |
| return send_file(image_path, mimetype='image/png') | |
| except FileNotFoundError: | |
| return jsonify({'error': 'Image not found'}), 404 | |
| if __name__ == "__main__": | |
| app.run(debug=True, host="0.0.0.0", port=7860) | |